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Foreword

THIS ISN’T A math book. Instead, it’s a book #bout math—
about the possible end of a 350-year-long search and the start of
a new one. Written for the non-mathematician, this book at-
tempts to show the “queen of sciences” in a new way—as a sci-
ence and as an art. You’ll probably learn things about
mathematics that you didn’t know before —about its triumphs
and failings, about its human aspects, and about its limits. Re-
gardless of whether the new proof of Fermat’s last theorem holds
up under scrutiny, you’ll learn how mathematics has thrown off
the yoke of Euclid’s legacy and ventured into the deepest waters
of the imagination, whether for better or for worse. And you’ll
find it understandable to read, regardless of the extent of your
mathematical education.

Karl Rubin of Ohio State University, who received his Ph.D.
from Harvard University under the supervision of Andrew Wiles,
and who was in attendance at the meeting where Wiles presented
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his proof of Fermat’s last theorem, has generously allowed us to
reprint his brief sketch of the highlights. (Rubin is best known
for his work on elliptic curves, a special class of equations that
play a fundamental role in the proof; he received the Cole Prize
in Number Theory in 1992.) The sketch was sent through elec-
tronic mail to his math newsgroup following the last lecture, and
we’ve left it intact in the appendix with all of its “you are there”
charm, including the e-mail salutation and the translation idio-
syncrasies, such as " instead of superscript. You’ll find a not-very-
plain-English version of the proof in the text.
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[1]

One of the Hottest Stories in the
History of Marh

{ Archimedes Thinking in the Bathtub |

‘‘EUREKA[1HAVE FOUNDIT!] Thenagain, maybe T haven’t.”
It’s no wonder that Archimedes didn’t say that second sentence
while sinking down into a warm bath. In the legendary story from
the third century B.C., the Greek tyrant Hiero II asked the re-
nowed mathematician and physicist to find a method for deter-
mining whether a crown was made of pure gold or alloyed with
silver instead. Considering Hiero’s notoriously unpleasant tem-
perament, Archimedes was lucky to realize, as he stepped into
the tub, that a given weight of gold would displace less water than
an equal weight of silver. (Gold is denser than silver, so a gold
coin would be smaller than a silver coin that weighed the same.)
In the throes of mathematical ecstasy over this momentous dis-
covery, he is supposed to have run home stark naked, shouting
“Eureka! Eureka!” [“] have found it! I have found it!”’].
Archimedes was also lucky to be given a task that would yield
to instant insight. (It’s a good thing that showers—that ““colonial

(1]
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abomination” —weren’t popular then; mathematical progress
might have been considerably slowed.) Proving Fermat’s last the-
orem undoubtedly would have taken him considerably longer.
But as of June of 1933, that puzzle has at last been solved. Well,
maybe.

[ Pierre de Fermart Writing in the Margin ]

More than 350 years ago, a French mathematician and physi-
cist named Pierre de Fermat wrote down an apparently simple
little theorem in the margins of a mathematical book he was
reading. The theorem was about what solutions are not pos-
sible for certain elementary equations. Fermat added that he
had discovered a remarkable proof for his statement, but that
there was no room in the margin to include it. He died with-
out ever presenting the proof to substantiate this tantalizing
claim. The best of mathematicians have been trying to do so
ever since.

As Nigel Hawkes, Science Editor for The Times of London,
put it on June 24, 1993, “Since Fermat wrote down the theo-
rem, it has become the mathemartical equivalent of Schubert’s
Unfinished Symphony.” 'Two days later, the same newspaper la-
beled a proof of the theorem ‘‘the mathematical result of the
century,”’ calling it “‘as spectacular in its field as the discovery
of Shakespeare’s alleged Love’s Labour’s Found or the authen-
tication of a lost Botticelli.”

It’s not as if no progress has been made at all. Since the
arrival of computers, the theorem clearly has been shown to
hold true for extremely high numbers. In 1992, an enormous
computer effort verified Fermat’s last theorem for exponents
up to four million.

That might seem proof enough for the general public, but
for mathematicians, it’s no proof at all. Many of them were
coming to the reluctant conclusion that Fermat’s reach may
have exceeded his grasp at last. “It has always been my belief



MARILYN VOS SAVANT [3]

that Fermat made a mistake,” said Dr. Harold Edwards, a pro-
fessor of mathematics at the Courant Institute of Mathemati-
cal Sciences at New York University and author of Fermar’s Last
Theorem, the definitive book on the subject, as quoted in 7%e
Chronicle of Higher Education. Still, mathematicians kept
searching for the elusive proof.

Then, on July 2, 1993, came the news that sent shock waves
through the mathematical community around the world. After
dozens of claims of success made too early, hundreds made
too unwisely, and thousands made too amateurishly, many
mathematicians are cautiously heralding the work of a publi-
cally obscure, though highly respected colleague. They be-
lieve he may have at long last conquered what is perhaps the
most intimidating test of strength and endurance and proba-
bly the most famous of unsolved problems in their corner of
the intellectual landscape. (Mathematical details of Fermat’s
last theorem and an overview of Andrew Wiles’s proposed
proof can be found in Chapter Two. An abbreviated sketch of
the proof itself can be found in the Appendix to this book.)

| Andrew Wiles Lecturing ar Cambridge
University ]

Dr. Andrew Wiles is a reserved, bespectacled 40-year-old En-
glish mathematician at Princeton University. (It goes without
saying that he’s also very intelligent; there are no mathemati-
cians who aren’r.) Wiles became the subject of intense interest
when he made a modest announcement to about seventy-five
mathematicians at the end of a three-day lecture series at the
newly opened Isaac Newton Institute for Mathematical Sci-
ences at Cambridge University, in England, where he had
done his doctoral studies.

This is how Science magazine decribed the atmosphere as
the lectures were about to begin: ““He was equally quiet when
he arrived at the Newton Institute . . . but rumors of a break-



14] THE WORLD’S MOST FAMOUS MATH PROBLEM

through were starting to fly among the other participants—in
part because Wiles, who normally doesn’t ask to give lectures,
had asked to give not just one, but three hour-long talks. John
Coates of Cambridge University, who was Wiles’s thesis ad-
viser at Cambridge in the mid-1970s, scheduled him on Mon-
day, Tuesday, and Wednesday, June 21-23.”

Time magazine reported on the growing excitement in the
hall: ““By the end of the first hour . . . , they knew something
was up. Recalls Nigel Boston, a visiting mathematician
[there]: “We realized where he could be heading. People were
giving each other wide-eyed looks.” By the end of the third
hour, the room was packed with excited number theorists.
Wiles finished up his talk and wrote a simple equation on the
blackboard, a mathematical afterthought that logically fol-
lowed from all that he had been saying.”

According to The Associated Press report on the following day,
“Dr. Peter Goddard, the institute’s deputy director, said . . .
that nobody knew [Wiles] had come up with a solution until
the very end of a lecture in which he had written down many
mathematical results. ‘He wrote down the last line, and the
last line was a corollary to his last result, and it was Fermat’s
last theorem,” Goddard said. ‘Then, he turned to the audi-
ence and smiled and said something like, ‘I better stop
there.” ”

Reuter’s reported, “There was a moment of stunned silence
followed by rapturous applause as the enormity [sic] of the
event sank in.” "Telephones began to ring, faxes churned out
copy, electronic mail zapped into computers all over the
world, and the communications satellites went into overdrive.

Could it really be true? Mathematicians were first startled,
then excited, and ultimately—well, the emotions are mixed.
One day after the event, The New York Times quoted Dr. Leon-
ard Adelman of the University of Southern California as say-
ing, “It’s the most exciting thing that’s happened in—geez—
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maybe ever, in mathematics.” But on June 29, 1993, the paper
ran a more reflective response from Wiles himself.

There is a certain sadness in solving the last theorem. All
number theorists, deep down, feel that. For many of us,
his problem drew us in, and we always considered it some-
thing you dream about, but never actually do. There is a
sense of loss, actually.

[ The Five-Poinr Tesr |

Surely, a great many mathematicians must share Wiles’s sense
of loss. But, just as surely, many may lack his concurrent ela-
tion. For them—and also for Wiles, of course —there are sev-
eral further observations that merit consideration. The
following is my own general guide to the analysis and ultimate
evaluation of a proof. I call it the “Five-Point Test.”

[ 1] Might there be a subtle error in the proof?
Yes. The two-hundred-page proof is unpublished as yet.
Until it appears in mathematical journals, which could take
months, and until it is thoroughly checked and rechecked
and double-checked, there remains the possibility that it
contains a significant error. (There are also likely to be a
few minor errors that can be corrected without damaging
the overall proof. This is called “polishing” the proof.)
[ 21 Does the proof rest on numerous other proofs (especially recent,
arcane, obscure, or delicare ones)?
Yes. In 1954, the late Japanese mathematician Dr. Yu-
taka Taniyama made a conjecture about elliptic curves (a
particular class of cubic equations). Taniyama’s conjecture
(known also as Taniyama-Weil for broader attribution) was
further clarified by Dr. Goro Shimura of Princeton Univer-
sity. (The conjecture now can be known as Shimura-Tani-
yama-Weil, but for simplicity’s sake, further references
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will be to Taniyama alone, as is most common elsewhere.)
No one, however, thought that this conjecture had any re-
lationship with Fermac’s last theorem. Now the plot thick-
ens. About ten years ago, Dr. Gerhard Frey of the
University of the Saarland in Germany postulated a con-
nection between Taniyama’s conjecture and the theorem.
In essence, it suggested that if the conjecture were proved,
so would be Fermat’s last theorem.

Dr. Kenneth Ribet of the University of California at
Berkeley presented a proof of the connection in 1987.
(More specifically, he demonstrated that an elliptic curve
can be correlated with a solution to those equations that
Fermat maintained were impossible. If it could be proved
that such an elliptic curve is impossible, it would follow
that solutions to Fermat’s equations were impossible, too.)
And now, Wiles apparently has proved one form of Tani-
yama’s conjecture, implying that Fermat’s last theorem is
true (that solutions to certain equations are not possible),
at least indirectly.

[ 31 Does the proof rest on a whole new philosophy?
Yes. On June 29, 1993, The New Yor# Times quoted Ribet.

Ribet said that the "laniyama conjecture was part of a sort
of grand unified theory of mathematics. ‘“The Taniyama
conjecture is part of the vast Langlands philosophy,” Ribet
said. He explained that Dr. Robert Langlands, a professor
at the Institute for Advanced Study in Princeton, sug-
gested years ago that two apparently disparate fields of
mathematics were actually one and the same. . . . The
Langlands philosophy, Ribet said, “‘is a deep, far-reaching
vision in mathematics.” The ‘Taniyama conjecture, he
added, “‘is a special case of what Langlands suspected.”

[ 4] Is the proof unintelligible to most experts in the field?
Yes, at least so far. However, Wiles is a mathematician of
significant stature, and he has a reputation for being ex-



MARILYN VOS SAVANT [71]

tremely careful. Mathematicians are further convinced by
the approval of Dr. Barry Mazur of Harvard University and
the overwhelming endorsement of Ribet, who was the
mathematician instrumental in providing the step that
linked the conjecture to the theorem and ultimately to
Wiles’[s] proof.

“Wiles’[s] arguments are based on the most advanced,
most elaborate mathematics that exist in this field,” Ribet
was quoted in 7ime magazine, referring to his own work
[among others]—upon which Wiles’[s] proof rests. ““The
number of mathematicians who can really fully understand
the arguments would fit into a conference room.”” And Ri-
bet estimated to The New York Times “‘that a tenth of one
percent of mathematicians could understand Wiles’[s]
work because the mathematics is so technical.”

[ 51 Are there any “signs of forced entry,” as a detective might call 1t?

Yes. According to The New York Times, “Ribet’s proof
linking the conjecture to Fermat’s last theorem fired
Wiles’[s] imagination. . . . The very day that Wiles heard
about Ribet’s result, he dedicated his life to using it to
prove Fermat’s last theorem.”

These are the points to ponder, not just with this proof, but
with them all. (The ““point to ponder” regarding this proof in
particular follows shortly.) It shouldn’t be surprising, by the
way, and shouldn’t be regarded as a negative assessment, that
the “Five-Point Test” rang cautionary bells on every question
regarding Wiles’s work. Considering that his apparent
achievement is a proof that has eluded mathematicians for
centuries, this caution, about too quickly accepting it, is
understandable. A proof that rings no cautionary bells is likely
to be much more straightforward (and shorter) than one that
comes at the end of a three-day lecture series in Cambridge,
entitled “Modular Forms, Elliptic Curves, and Galois Repre-
sentations,”’ part of a conference on ‘‘ P-adic Galois Represen-
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tations, Iwasawa Theory, and the Tamagawa Numbers of
Motives.”

However, when a proof is supported by a small group of
people, and when others in the field believe that virtually no
one outside this group is capable of understanding it, the cau-
tionary bell on Point Four rings a little louder. Who is in an
appropriate position to verify the proof? Mathematicians are
an extremely bright class of professionals, and most of them
should be more than capable of understanding the proof in-
tellectually. The problem is that Wiles’s field is so narrowly
specialized that few mathematicians have the time it would
take to educate themselves in that particular area.

[ Dr. Wiles’s Experience ]

Wiles’ credentials are impeccable (he was educated at Oxford
and Cambridge Universities and has been a professor at
Princeton since 1982; earlier appointments were at Harvard
University and the Institute for Advanced Study in Princeton),
and he has acquitted himself admirably throughout his profes-
sional life.

For one thing, his fellow mathematicians report that he has
expressed great reservations about speaking to the press.
(This may in itself be evidence of good judgment, considering
the mayhem that can result from reckless claims. The cold
fusion story, which proved unfounded, is one example.

But then again, perhaps Wiles simply has a keen sense of
humor. After all, without a direct explanation from him, jour-
nalists all over the world are left to struggle to explain to baf-
fled readers what has mystified even the mathematical
community for centuries.) He did tell The Chronicle of Higher
Education: “1 think it’s very important that people are encour-
aged to work on very hard problems. The tendency today is
to work on short and immediate problems.”” In addition to his
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other qualities, Wiles clearly is possessed of an admirable de-
termination.

His is a classic story, in a way, and if his proof stands the
test of time, Wiles will take his place in the history books. (Of
course, the test of time often isn’t the best test, as anyone
familiar with the Ptolemaic universe can attest. The Ptole-
maic system was the most important of the geocentric cos-
mological theories, that is, those theories maintaining that the
Earth stood motionless at the center of the universe with all
heavenly bodies revolving around it. This theory dominated
astronomy for millennia, until the arrival of the heliocentric,
or sun-centered, Copernican system in the sixteenth century.
In more modern times, Albert Einstein’s general theory of
relativity maintains enormous influence, but it is unknown
whether he eventually will take a place in the history books
closer to Ptolemy or closer to Copernicus.)

Born in Cambridge, Andrew Wiles first learned about Fer-
mat’s last theorem when he was only ten years old, a fine age
at which to develop a lifelong obsession, and he surely did. It
was, he reports, the reason he decided to become a mathe-
matician—he wanted to find the solution to the problem. (“‘As
a child, I used to think that Fermat had solved it,” he told T/ke
Chronicle of Higher Education. “‘My guess now is that if he really
thought he solved it, he would have written the proof some-
where.”’) Not surprisingly, Wiles worked on it with naive en-
thusiasm as a teenager, but it wasn’t until 1987 (when Ribet
presented a proof of the connection between Taniyama’s con-
jecture and Fermat’s last theorem) that he took it upon him-
self as a personal (and private) challenge. “ ‘1 have a
preference for working on things that nobody else wants to or
that nobody thinks they can solve,” he explains. ‘I prefer to
compete with nature rather than be part of something fashion-
able (quoted in the September 1993 issue of Scientific Amer:-
can).’ ”’

Very few people knew what Wiles was doing in his little
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third-floor attic office at home for seven years, and he wanted
it that way for good reason. After all, what would people
think? Worse, what would they think if he worked on it for a
lifetime and failed? The assessments would probably not be
charitable, especially for a man with a wife and children and
a house with an average assortment of squeaky screen doors,
leaf-filled gutters, and dandelions in the backyard. According
to the September 1993 issue of Scientific American, . . . Wiles
virtually stopped writing papers, attending conferences or
even reading anything unrelated to his goal.” It would surprise
no one if, after seven years of this, every window in the house
eventually became stuck shut. (Even so, followers of Fermat
certainly knew what he was up to. In Dorian Goldfeld’s pref-
ace to the proceedings of the conference ‘“Number Theory
Related to Fermat’s Last Theorem,” sponsored by the Vaughn
Foundation in May of 1982, it was noted that Harold Edwards,
Nicholas Katz, Neal Koblitz, Barry Mazur, and Andrew Wiles
himself were the other organizers of the conference.)

Unlike certain scientists who put out self-congratulatory
press releases every time they fill up a notebook, Wiles didn’t
mention beforehand that he intended to do the mathemati-
cian’s equivalent of lobbing a hand grenade into a fireworks
factory. Instead, as the The New York Times reported, people
were concerned about ‘“‘whether the proof would be accepted
by the handful of mathematicians who understood the field.”
They need not have worried, at least for the time being. This
is how The New York Times put it in its June 29, 1993 issue:

Around 5:30 Wednesday morning, Dr. [John] Conway [of
Princeton University] unlocked the door to Fine Hall, the
brown tower that houses the mathematics department,
went into his office, and turned on his computer. The first
message arrived at 5:53 AM. from Dr. John McKay of
Concordia University in Montreal, who was attending the
meeting. “F.L.T. proved by Wiles,” it said.

Q.E.D.
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(Ribet was the next lecturer on the program. It must have
been a tough act to follow.) Apparently, Wiles didn’t fully
expect the reaction he got. “Friends said when he returned to
Princeton last week that he had been a bit overwhelmed by
the stir he had created,” noted 74e Chronicle of Higher Educa-
tion. It also quoted Simon Kochen, the chairman of the math-
ematics department at Princeton University. “‘He finally got
an answering machine at home to answer all of the calls.” The
September 1993 issue of Scientific American noted that “Wiles
does think his . . . proof can be simplified. Will Wiles take on
this task? ‘I’'m afraid I’ve made this so fashionable that I may
have to move on to something else,’ he replies.”

[ Another Poinr to Ponder ]

This is the “point to ponder” I mentioned earlier. The math-
ematics of today is a far cry from the mathematics of Fermat’s
time, which no one will dispute. The same is true for the field
of medicine, and we’re all very thankful for that. Buc I also
feel safe in opining that mathematical purists, transported by
time machine to the modern era, would be incensed by the
practice of mathematics today, which may be threatening to
turn what Carl Friedrich Gauss (the German mathematician,
physicist, and astronomer) called the “‘queen of sciences’ into
an art form, instead. Here’s what Philip Davis and Reuben
Hersh had to say about the subject in their book 7he Mathe-
matical Experience, winner of the 1983 American Book Award.

The Degradation of the Geometric Consciousness

It has often been remarked over the past century and a
half that there has been a steady and progressive degrada-
tion of the geometric and kinesthetic elements of mathe-
matical instruction and research. During this period, the
formal, the symbolic, the verbal, and the analytic elements
have prospered greatly.
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What are some of the reasons for this decline? A number
of explanations come to mind:

1. The wremendous impact of Descartes’ La Geometrie,
wherein geometry was reduced to algebra.

2. The impact in the late nineteenth century of Felix
Klein's program of unifying geometries by group theory.

3. The collapse, in the early nineteenth century, of the
view derived largely from limited sense experience that
the geometry of Euclid has a priors truth for the universe,
that it is #e model for physical space.

4. The incompleteness of the logical structure of classi-
cal Euclidean geometry as discovered in the nineteenth
century and as corrected by Hilbert and others.

5. The limitations of two or three physical dimensions
which form the natural backdrop for visual geometry.

6. The discovery of non-Euclidean geometries. This is
related to the limitations of the visual ground field over
which visual geometry is built, as opposed to the great
generality that is possible when geometry is algebraized
and abstracted (non-Euclidean geometries, complex ge-
ometries, finite geometries, linear algebra, metric spaces,
etc.).

7. The limitations of the eye in its perception of math-
ematical ‘‘cruths’” (continuous, nondifferentiable func-
tions; optical illusions; suggestive, but misleading special
cases).

In brief, here’s what’s happened in the field of mathematics
and how this relates specifically to the current work on Fer-
mat’s last theorem. The geometry of Fermat’s day was a set of
principles that were derived by rigorous logical steps from the
axioms detailed by Euclid (hence known as Euclidean geom-
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etry), the Greek mathematician of the third century B.C., in
his E/lements (a series of thirteen books covering that subject
and much more in mathematics, including a deductive system
of proof). These are the first five axioms.

[ 1] Given two points, there is a line that joins them.

[2] A line can be prolonged indefinitely.

[ 3] A circle can be constructed when its center, and a point on
it, are given.

[ 4] All right angles are equal.

[5] If a straight line falling on two straight lines makes the
interior angles on the same side less than two right angles,
the two straight lines, if produced indefinitely, meet on
that side on which the angles are less than the two right
angles.

That fifth axiom is known “Euclid’s parallel postulate” and
can be rephrased this way: If a point lies outside a straight
line, one (and only one) straight line can be drawn through
that point that will be parallel to the first line.

[ Euclidean Versus the New Non-Euclidean
Geometries ]

Some mathematicians in the nineteenth century began to dis-
agree with the “parallel postulate.”” This gave rise to non-Eu-
clidean geometries, of which there are two important forms,
both of which replace the fifth postulate with alternatives.
(Agreeing with Euclid’s fifth postulate came to be known as
“taking the Fifth.””) One of the two main alternatives allows
an snfinite number of parallels through any outside point. “‘Hy-
perbolic” (Lobachevskian) geometry developed from this ap-
proach. The other main alternative allows #zo parallels through
any outside point. “Elliptic” (Riemannian) geometry devel-
oped from this form. Superficially, these definitions of paral-
lels seem ridiculous to the non-mathematician, but the new
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systems of geometry have their own definitions and systems
of logic. (No system of geometry is found in nature, including
the Euclidean system. The earth is not a perfect sphere, and
cubes don’t grow on trees.)

The outcome in both Euclidean geometry and the alterna-
tives is similar—except for the postulates involving parallel
lines. (Other postulates are modified.) However, the ramifica-
tions of the differences are great regarding subjects like space
and infinity. (For example, in Euclidean geometry, the length
of a line is infinite; in elliptic geometry, it is strictly finite. In
this non-Euclidean universe, space is finite, but unbounded,
and it curves back around on itself.)

Jeremy Gray discusses the subject at length in the second
edition of his book called Ideas of Space: ‘‘Euclidean, Non-Eu-
clidean, and Relativistic,” noting;:

Aristotle discussed whether thinking that parallels meet is
a geometric or an ungeometric error, that is, whether the
contradiction which arises from denying the existence of
parallels is strictly mathematical or more broadly logical in
its nature.

We might discuss a misapplication of statistics in the
same way: is a man wrong to apply statistics in this way or
to analyze the problem in this way?

For practical applications in the “real world” (such as in en-
gineering, for example), one works only with Euclidean ge-
ometry. But in the world of the imagination, one can work
with anything at all. This is how Morris Kline stated it in his
book Mathematics for the Nonmathematician.

Remarkable and revolutionary developments of another
kind also took place in the nineteenth century, and these
resulted from a re-examination of elementary mathemat-
ics. The most profound in its intellectual significance was
the creation of non-Euclidean geometry by Gauss. His dis-
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covery had both tantalizing and disturbing implications:
tantalizing in that this new field contained entirely new
geometries based on axioms which differ from Euclid’s,
and disturbing in that it shattered man’s firmest convic-
tion, namely that mathematics is a body of truths. With
the truth of mathematics undermined, realms of philoso-
phy, science, and even some religious beliefs went up in
smoke. So shocking were the implications that even math-
ematicians refused to take non-Euclidean geometry seri-
ously until the theory of relativity forced them to face the
full significance of the creation.

It’s not that Euclid had been thought infallible. Rather,
when non-Euclidean geometry was first conceived, “It
seemed to be at the edge of madness,”” as Philip Davis and
Reuben Hersh put it in their book T/e Mathematical Experience.
Indeed, Sir Archur Eddington sounded like the high priest of
a mathematical illuminati in his non-Euclidean *“bible” The
Expanding Universe, which often reads like a religious text.

I see our spherical universe like a bubble in four dimen-
sions; length, breadth, and thickness, all lie in the skin of
the bubble. Can I picture this bubble rotating? Why, of
course I can. I fix on one direction in the four dimensions
as axis, and | see the other three dimensions whirling
around it. Perhaps I never actually see more than two at a
time; but thought flits rapidly from one pair to another, so
that all three seem to be hard at it. Can yox picture it like
that? If you fail, it is just as well. For we know by analysis
that a bubble in four dimensions does not rotate that way
at all. Three dimensions cannot spin round a fourth. They
must rotate two round two; that is to say, the bubble does
not rotate about a line axis but about a plane. I know that
that is true; but I cannot visualise it.

. . . The material system, like the space, exhibits closure;
so that no galaxy is more central than another, and none
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can be said to be at the outside. Such a distribution is at
first sight inconceivable, but that is because we try to con-
ceive it in flat space.

. . . Apart from our reluctance to tackle a difficult and un-
familiar conception, the only thing that can be urged
against spherical space is that more than twenty centuries
ago a certain Greek published a set of axioms which (infer-
entially) stated that spherical space is impossible.

The best-known example of a non-Euclidean idea is Ein-
stein’s general theory of relativity, which has little validity
outside elliptic geometry. (Space remains Euclidean in special
relativity). Curved space is fundamental in relativity theory.
Albert Michelson, the first American to win the Nobel Prize
in physics, was quoted in R. S. Shankland’s book Conversa-
tions With Albert Einstein. (Michelson and Edward Morley con-
ducted the Michelson-Morley experiment, which led to the
refutation of the ether hypothesis—the medium that was sup-
posed to be required for the transmission of electromagnetic
waves in free space—and was later explained by Einstein’s
theory of relativity.) Michelson told Einstein ““he [Michelson]
was sorry his own work may have helped to start this ‘monster’
[the theory of relativity].”

If any part of Wiles’s proof, or any of the steps leading up
to it (inciuding, among others, Ribet’s proof and the Frey pa-
per on the links between stable elliptic curves and certain dio-
phantine equations), has any non-Euclidean component that
is invalid in Euclidean geometry, that proof inhabits a very
different world from the world inhabited by Fermat. Indeed,
the chain of proof is solidly based in hyperbolic (Lobachev-
skian) geometry, which Nikolai L.obachevsky himself named
“imaginary geometry” in his esteemed paper called “On the
Foundations of Geometry,” which details the complete devel-
opment of hyperbolic geometry.

“There are many others whose work Wiles had to use,”
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Simon Kochen, Princeton’s mathematics department chair-
man, pointed out to the Associated Press. “He was throwing
the kitchen sink at it, using all kinds of techniques that had
been developed in recent years.”

[l Douwbling Cubes, Trisecting Angles, and
Squaring Circles |

Three of the oldest problems in mathematics—all more than
two thousand years old—are known as “Doubling the Cube,”
“Trisecting the Angle,” and ‘“‘Squaring the Circle.”” All con-
structions were to be accomplished using only a ruler—as a
straight edge, not as a measuring device—and a compass. The
problem of doubling the cube is to construct a cube with twice
the volume of a given cube; the problem of trisecting an arbi-
trary angle is to construct a method to divide any given angle
into three equal parts (it must work for every angle); the prob-
lem of squaring the circle is to construct a square with an area
equal to that of a given circle. These problems have fascinated
professional and amateur mathematicians alike, so much so
that Arthur Jones, Sidney Morris, and Kenneth Pearson re-
count in their book about the subject, Abstract Algebra and Fa-
mous Impossibilities:

In the time of the Greeks, a special word was used to de-
scribe people who tried to [square the circle]—tetragonid-
zein—which means ‘‘to occupy oneself with the
quadrature.” . . . In 1775, the Paris Academy found it nec-
essary to protect its officials from wasting their time and
energy examining purported solutions of these problems
by amateur mathematicians. It passed a resolution . . . that
no more solutions were to be examined of the problems of
doubling the cube, trisecting an arbitrary angle, and squar-
ing the circle, and that the same resolution should apply to
machines for exhibiting perpetual motion.



[ 18] THE WORLD’S MOST FAMOUS MATH PROBLEM

It wasn’t until the nineteenth century that all three prob-
lems were proven impossible to solve. This was the subject of
Jones, Morris, and Pearson’s book, which is an abstract algebra
textbook. (In its issue of October 1978, Scientific American
noted that, “Fermat’s last theorem differs from circle squaring
and angle trisecting in that those tasks are known to be im-
possible, and so any purported solutions can be rejected out
of hand.”’) Bearing all this in mind, note what Jeremy Gray
said in his book called Ildeas of Space about Janosor (Janos)
Bolyai, one of the three founders of hyperbolic geometry.

Finally, he concluded by solving in non-Euclidean geom-
etry one of the classical problems of geometry: SQUAR-
ING THE CIRCLE [capitalization added for emphasis]
i.e., constructing a square equal in area to a given circle.
At the time, it was not known whether this could be done
in Euclidean geometry, the first conclusive proof of impos-
sibility being given in 1882. . . . Bolyai indeed pointed out
that his proof will not work in the case of Euclidean ge-
ometry.

So one of the founders of hyperbolic geometry (the geom-
etry of the current proof of Fermat’s last theorem) managed to
square the circle?! Then why is it known as such a famous
impossibility? Has the circle been squared, or has it not? That
issue of Scientific American noted that squaring the circle is
“known to be impossible, and so any purported solutions can
be rejected out of hand.” So has Fermat’s last theorem been
proved, or has it not? That is, if we reject a kyperbolic method of
squaring the circle, we should also reject a hyperbolic proof of Fer-
mat’s last theorem!

This is not a matter of merely changing the rules (for ex-
ample, using a ruler instead of a straight edge.) It’s much
more significant than that. Instead, it’s a matter of changing
whole definitions, including the definition of what constitutes
a contradiction. And regardless, it is logically inconsistent to
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reject a hyperbolic method of squaring the circle and acceps a
hyperbolic method of proving F.L.T.!

The next thing you know, someone will use non-
Euclidean geometry to prove Euclid’s parallel postulate! (And
then what a fix Einstein will be in.)



[2]

Pierre de Fermat and the Last Theorem

[ Pierre de Fermar |

PIERRE DE FERMAT (pronounced fehr-MAH), the French
mathematician who was born in Beaumont-de-Lomagne, Lan-
guedoc, on August 20, 1601, and died at Castres, near Toulouse,
on January 12, 1665, is now far more famous than he ever was—
mainly because he had a habit of scribbling little notes in the
margins of the books he was reading. (In Eric Temple Bell’s book
The Last Problem, Bell wrote that Fermat was accused of “propos-
ing problems to the English mathematicians which he had not
solved and could not solve,” and 7%e Times of London called Fer-
mat “‘a vain and tiresome joker as well as a brilliant mathemati-
cian,” but it may be best to put that “‘joker” possibility out of our
minds.)

Fermat was married. He and his wife had five children, and
they led an uneventful, quiet life close to home, spending vaca-
tions at their country house. Along with his contemporary Blaise
Pascal, the French mathematician and physicist, Fermat founded

[20]
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the theory of probability. He also studied the properties of natu-
ral numbers (the set of numbers beginning with 1, 2, 3, . . . that
are used for counting) and was the first to progress beyond the
work of Diophantus, the Greek mathematician from the third
century. In fact, Fermat is known as the founder of modern num-
ber theory.

And it was in number theory that Fermat made his greatest
mark —literally. While reading his Latin translation of Diophan-
tus’s Greek masterpicce Arithmetica, he wrote a deceptively sim-
ple comment in Latin next to a problem about finding squares
that are sums of two other squares (for example, 32 + 42 = 5?),
The comment he made is now known as Fermat’s Last Theorem
(“F.L.T.” wo its closest friends). Scientific American has aptly trans-
lated it into English:

On the other hand, it is impossible for a cube to be the
sum of two cubes, a fourth power to be the sum of two
fourth powers, or in general for any number that is a power
greater than the second to be the sum of two like powers.
I have discovered a truly marvelous demonstration of this
proposition that this margin is too narrow to contain.

[ Fermat’s Last Theorem |

Restated, the equation x* + y" = z", in which n is an integer
greater than 2, has no solution in positive integers. This
means that there are no positive whole numbers that solve the
equation when the exponent " is greater than 2. When "is 2,
there is an infinity of solutions. One such solution is the Py-
thagorean theorem, which states that the sum of the squares
of the lengths of two sides of a right-angled triangle is equal
to the square of the length of the hypotenuse (the side that is
opposite the right angle). As an example, 3?2 + 42 = 52, or 9
+ 16 = 25. (When the exponent is 2, the solution is called a
“Pythagorean triple.”’) Fermat’s last theorem means that it is
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impossible to find any positive whole numbers for x, y, and z
when "is 3 or more.

It is uncomplicated to prove that x* + y* = z*is impossible;
therefore, the original equation is impossible whenever "is di-
visible by 4. (If » = 4k, then x* + y" = z" implies the impos-
sible X* + Y* = Z*in which X = x| Y = vy~ and Z = z~)
Also, if x™ + y™ = z™can be proved to be impossible for any
particular ™, it follows that the original equation is impossible
for any "that is divisible by ™. And because every "greater than
2 i1s divisible either by 4 or by an odd prime number, Fermat’s
last theorem can be proved in its entirety if it is proved in the
cases where "is a prime number.

[ Learned Attempts at Proof ]

Unfortunately, Fermat died without ever offering a proof to
the world of mathematics, and people have been searching for
one ever since. (Interestingly, this was not the only cryptic
note Fermat had ever made in a margin. He made another
note in the same copy of Arithmetica about binomial coeffi-
cients—the factor multiplying the variables in a binomial ex-
pansion, for example, in the equation (x + y)? = x% + 2xy +
y?, the binomial coefficients are 1, 2, and 1—which read, ac-
cording to André Weil in his book Number Theory, ‘1 have no
time, nor space enough, for writing down the proof in this
margin.”’ It’s very much like the notorious “last’” theorem,
but it has already been proved true. In fact, Fermat made ex-
tensive marginal notes in that particular volume, and after his
death, one of his sons published a new edition of Arithmetica,
complete with Fermat’s marginal notes. The original copy has
been lost.)

Over the centuries, the theorem has been proved for indi-
vidual exponents. Leonhard Euler, the Swiss mathematician,
proved F.L.'T. was true when the exponent was 3. Fermat him-
self had proved it was true when the exponent was 4, and so
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did Bernard Frénicle de Bessy. Following that, Adrien Marie
Legendre, the French mathematician, proved it was true
when the exponent was 5. It also was proved true for 7 by
Gabriel Lamé, another French mathematician, who thought
he had discovered a method for proving other numbers. Sci-
entific American recounted that story: ““I'he unfortunate Lamé
was so carried away by his own optimism that he announced
to a meeting of the French Academy of Sciences that he had
proved Fermat’s last theorem by this method. As soon as he
had presented a sketch of his proof, however, Joseph Liouville
rose to object . . . There were other weak points, however.
L.amé’s enthusiasm was so extreme that he overlooked several
other serious difficulties. . . . Naturally LLamé was embar-
rassed by the foolishness of his errors and by having them
published in the proceedings of the French Academy for the
entire mathematical world to see. ‘If only you had been in
Paris or I had been in Berlin,” he wrote to his friend . . . in
Berlin, ‘all of this would not have happened.”” In summary,
since Fermat’s death, isolated cases have been proved true,
but none of these constituted a general proof.

Sophie Germain, a French mathematician, made significant
progress, proving that the theorem was true under certain con-
ditions for any prime number under 100. (Incidentally, she
performed this work in nearly impossible circumstances.
Without a formal education —because she was a woman—she
taught herself Latin, Greek, and mathematics at home; she
was forced to work using a male pseudonym as a disguise.)
Scientific American elaborated:

In 1808, Germain wrote to Gauss, describing what would
be her most brilliant work in number theory. Germain
proved that if x, y, and z are integers, and if x> + y°* = 25,
then either x, y, or z must be divisible by 5. Germain’s
theorem is a major step toward proving Fermat’s last theo-
rem for the case when ° equals 5.
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Gauss never commented on Germain’s theorem. He had
recently become professor of astronomy at the University
of Gottingen, and he set aside his work in number theory.
He became consumed with professional and personal prob-
lems.

For the most part, Germain’s theorem remained un-
known. In 1823 Legendre mentions it in a paper in which
he describes his proof of Fermat’s last theorem for the case
where ®is 5. . . . Germain’s theorem was the most impor-
tant result related to Fermat’s last theorem from 1738, until
the contributions of Ernst Kummer in 1840.

Ernst Eduard Kummer, the German mathematician, had de-
veloped a new theory of ideal factorization, and he used it to
prove the theorem true for all prime exponents below 100 ex-
cept for 37, 59, and 67.

In 1815 and 1860, the French Academy of Sciences offered
a gold medal and three hundred francs to anyone who could
prove F.L.T., and the Geman mathematician Carl L.ouis Fer-
dinand von Lindemann succumbed to the temptation. After
more than five years of work, von Lindemann claimed credit
and published a lengthy paper of substantiation in 1907,
Shortly afterward, however, an embarrassingly elementary er-
ror was discovered nearly at the beginning of the paper, inval-
idating his work.

Others weren’t even interested in trying. David Hilberre,
the German mathematician, was asked why he didn’t try to
prove Fermat’s last theorem, and his answer was, ‘““‘Before be-
ginning, I should need to put in three years of intensive study,
and I haven’t that much time to squander on a probable fail-
ure.” Gauss likewise was uninterested, although for a differ-
ent reason. According to Paulo Ribenboim’s book Thirteen
Lectures on Fermat’s Last Theorem, he wrote in a letter to a col-
league, “‘I am very much obliged for your news concerning
the Paris prize. But I confess that Fermat’s theorem as an iso-
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lated proposition has very little interest for me, because I
could easily lay down a multitude of such propositions, which
one could neither prove nor dispose of.”

[ Unlearned Attemprs at Proof )

After this increased attention, the German Academy of Sci-
ences in Gottingen offered an astonishing prize of 100,000
marks in 1908, actually willed by a German mathematics pro-
fessor named Paul Wolfskehl. Despondent over a lost love
and —just like in the movies—not being able to find a proof
of Fermat’s last theorem, he decided to commit suicide and
made plans for his final act. Philip Davis and William Chinn
described the tense hours that followed in their book 3./416
and All Thar. “‘A few hours remained until the appointed time.
He went into his library, wondering what to do. He took down
some mathematical pamphlets from the shelf and fingered
them idly. By pure chance, he opened one of them. It was
Kummer’s work on Fermat’s last theorem. As he read the ar-
ticle, he thought he spotted an error in Kummer’s work. One
hour passed, two, three hours, while Wolfskehl checked the
mathematics. Finally, he was forced to admit that Kummer’s
argument was completely sound!”” But by then, the appointed
hour had passed, and Wolfskehl abandoned his plan.

In order to win the prize willed by Wolfskehl (who later
died of natural causes), the proof was required to be published
and to be judged correct by the German Academy of Sciences
no sooner than two years later. The prize is still standing,
although much reduced in value. (The soaring inflation of the
Weimar period in the 1920s took its toll, and the prize has now
been reduced to 7,500 marks, about $4,400 these days.) Nev-
ertheless, the German prize offer “attracted the world’s
cranks,”” as The New York Times put it on June 24, 1993, quoting
Edwards.
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When the Germans said the proof had to be published,
“the cranks began publishing their solutions in the vanity
press,” he said, yielding thousands of booklets. The Ger-
mans told him they would even award the prize for a proof
that the theorem was not true, Edwards added, saying that
they “would be so overjoyed that they wouldn’t have to
read through these submissions.”

[ Who Is a Crank? ]

I understand the sentiment expressed by Edwards and indeed
by every credentialed person I have ever heard comment on
the subject. And I may be virtually alone in believing that
amateur efforts are worthwhile, even though there have been
an incredible number of them in the case of F.L.T. But here
is my reasoning;

Fermat not only had a habit of scribbling little notes in the
margins of books, he also casually mentioned great discoveries
over dinners with friends and didn’t bother publishing them
at all. (His notes—not his formal papers—were published
posthumously.) For that reason (and another), he didn’t get
credit for his independent discovery of analytic geometry,
which went entirely to the French philosopher and mathema-
tician René Descartes instead, even though Descartes’s anal-
ysis was two-dimensional and Fermat’s was three-
dimensional.

Odd, isn’t it? Not really. The “other reason’ mentioned in
the previous paragraph is that Pierre de Fermat was himself an
“amateur.” That is, he was never a professional mathemati-
cian, which is the main reason he didn’t publish papers in the
normal fashion. Instead, he studied law and was graduated
from the University of Orléans in 1631, later becoming a judge
for the parliament in Toulouse. In his book called Number The-
ory, André Weil tells us that “the closest [Fermat] ever came
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to personal contact with a mathematician (apart from a [pos-
sible] visit from [the mathematician Jean de] Beaugrand was
[a] three days’ meeting with [Father] Mersenne . . . ,”” who
was not a professional mathematician himself. In fact, Fer-
mat’s participation in the mathematical community was
entirely through private correspondence to noted mathemati-
cians.

Publishing papers was not easy, in any case, as André Weil
relates in the same book:

Actually, in those days, it was not quite a simple matter for
a mathematician to send a work to the press. For the
printer to do a tolerable job, he had to be closely super-
vised by the author, or by someone familiar with the au-
thor’s style and notation; but that was not all. Only too
often, once the book had come out, did it become the butt
of acrimonious controversies to which there was no end.
. . . At the same time, it is clear that he [Fermat] always
experienced unusual difficulties in writing up his proofs for
publication; this awkwardness verged on paralysis when
number theory was concerned, since there were no models
there, ancient or modern, for him to follow.

Regardless, this is why I feel that no “amateur” who ever
worked on F.L.T. should be called a crank for that reason
alone. Not unless we apply that term to Fermat himself. (Or
Germain, for that matter.)

Whether we speak of the arts or of the sciences, closing a
field of thought to its credentialed followers exclusively can
only hinder that field’s progress—at least in part because
those very credentials so often are channelers of thought. In
the past, the problem was that generations of scientists (and
artists) were taught certain precepts early in their careers and
then adhered to them, right or wrong, producing many didac-
tic professionals who held too dearly to the familiar. But in
more modern times, we may be having a philosophical pole-
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shift and finding that incorrect zew precepts are taking hold in
a similar way.

Has impatience and frustration with the assumed limits of
human capacity become so great that intellectual energy now
expresses itself in an excess of creativity? Have past genera-
tions of scientists, protesting farfetched new ideas to their dy-
ing day, finally vanished into the past, leaving future
generations to be raised with these same new ideas, effec-
tively turning fantasy into fact, at least for the time being? It
may be.

So an attorney was the founder of modern number theory.
Why may an accountant not prove his point? Or an insurance
salesman? (Other than the obvious fact that their actual
chances of success are virtually nil.) These people aren’t
cranks. (Which brings another point to mind. If, in a letter to
Hilbert, an amateur mathematician had written like Edding-
ton did when he described his rotating bubble, would his let-
ter have been sent sailing into the *“‘round file™’?)

But many amateur efforts, which clearly include some des-
perate and/or unbalanced individuals, apparently have been
more than amusing, as evidenced in the following letter writ-
ten in 1974 by F. Schlichting of the Mathematics Institute of
the University of Gottingen to Paulo Ribenboim and quoted
in his book T#hirteen Lectures on Fermat’s Last Theorem.

Please excuse the delay in answering your letter. . . .
There is no count of the total number of “solutions’ sub-
mitted so far. In the first year (1907-1908) 621 solutions
were registered in the files of the Akademie, and today
they have stored about three meters of correspondence
concerning the Fermat problem. In recent decades, it was
handled in the following way: the secretary of the Akade-
mie divides the arriving manuscripts into (1) complete
nonsense, which is sent back immediately, and into (2)
material which looks like mathematics. The second part is
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given to the mathematical department and there, the work
of reading, finding mistakes, and answering is delegated to
one of the scientific assistants . . . at the moment, I am the
victim. There are about three to four letters to answer per
month, and there is a lot of funny and curious material
arriving, e.g., like the one sending the first half of his so-
lution and promising the second if we would pay 1000 DM
in advance; or another one, who promsied me ten percent
of his profits from publications, radio, and TV interviews
after he got famous, if only I would support him now; if
not, he threatened to send it to a Russian mathematics de-
partment to deprive us of the glory of discovering him.
From time to time, someone appears in Gottingen and in-
sists on personal discussion. . . .

As for Fermat himself, as André Weil tells us in his book
Number Theory, ‘‘His proofs have almost totally vanished. Writ-
ing them up, at a time when algebraic notation was still
clumsy in the extreme, and models were altogether absent,
would have cost a tremendous effort, and the complete lack
of interest on the part of his contemporaries must have been
depressing.”

Nevertheless, the tide of interest in F.L..'T. seemed endless.
The problem even turned up in two works of fiction —Murder
by Mathematics, a mystery novel by Hector Hawton, and 7%e
Devil and Samuel Flagg, a short story by Arthur Porges. In that
story, according to the January 1989 issue of Discover, ‘“‘Simon,
the protagonist . . . has managed to persuade Satan to engage
in a battle of wits. Simon gets to pose a single question, and
the devil has twenty-four hours to come up with the correct
answer, for which he’ll win the man’s soul. Should the devil
fail, however, he must provide Simon with lifelong health,
happiness, and money.” Here’s how the conversation went:

“All right,”” said Simon. He took a deep breath. “My ques-
tion is this: Is Fermat’s Last Theorem correct?”’
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The devil gulped. For the first time his air of assurance
weakened. “Whose last what?”” he asked in a hollow voice.

“Fermat’s proposition will ‘probably never be proved or
disproved,’” noted Philip Morrison in a review in Scientific
American in April 1985.

A few vyears later, in January 1992, Morrison wrote in an-
other review in the same publication: “[the book] closes in
1988, when one among many entries reports the claim that
the missing proof of Fermat’s last teasing theorem had after
three centuries been found! (. . . but flaws were soon found
in the new ‘proof’.)”” In its edition of April 14, 1988, New Sci-
entist quoted Enrico Bombieri of the Institute for Advanced
Study in Princeton. * ‘From a mathematical point of view,
[the flawed proof] is not useless,” adding that, there are ‘very
interesting ideas involved.” ”’ Gerd Faltings, also of Princeton
University, added, “ ‘We need a new idea.” ” So when we
wonder just how famous is F.L..T., it’s amusing to note that
Yoichi Miyaoka, the Japanese mathematician just mentioned,
an expert in differential geometry at Tokyo Metropolitan Uni-
versity, actually made it into the record books with an errone-
ous proof.

In his article entitled “Number Theory as Gadfly,” Barry
Mazur notes that “Despite the fact that [Fermat’s last theo-
rem] resists solution, it has inspired a prodigious amount of
first-rate mathematics.”

[ Wiles’s Proof in Not-Very-Plain English |

There is no way to state this proof in plain English, but the
following paragraphs are an effort toward that end.

Equations of the form x» + y* = z°, called Diophantine
equations when n is an integer, can be translated to describe a
certain set of elliptic curves. These curves represent the sur-
face of a torus, an object shaped like a smooth doughnut.

Taniyama suggested that for that certain set of elliptic



MARILYN VOS SAVANT [ 31]

curves in Euclidean geometry (where parallel lines never
meet, even if infinitely extended), there are corresponding
structures in the hyperbolic (non-Euclidean) plane (where
parallel lines can both converge and diverge).

Frey suggested a connection between that certain set of el-
liptic curves and Fermat’s last theorem, namely that if there
were solutions in violation of the theorem, they would gener-
ate a subset of ““semistable” elliptic curves, curves that could
not be represented in the hyperbolic plane.

Wiles accepted Ribet’s proof of Frey and reasoned that if
he (Wiles) could prove "Taniyama, at least for the ‘“Fermat sub-
set” of semistable elliptic curves (if not for that larger certain
set of elliptic curves), no solutions to Fermat’s last theorem
could exist, thereby implying a proof of F.L..'T.

Wiles then developed an unconventional method of count-
ing both the Euclidean semistable elliptic curves and their
hyperbolic (non-Euclidean) counterparts in such a way as to
demonstrate a one-to-one correspondence between the two
groups. In this way, he claims to have proved Taniyama for the
“Fermat subset” of semistable elliptic curves.

[ Unanswered Questions |

Other questions come to mind. If Fermat himself proved that
his last theorem was true when the exponent was 4, then why
didn’t he offer a general proof? The notes in the margin are
supposed to have been written in 1637, but Fermat didn’t die
until 1665, almost thirty years later. (It sounds as if he had
plenty of time.) And how do we know the date of 1637 in the
first place? Did Fermat date his hastily written little note? Ah,
but the answers to those questions, as the answers to so many
other questions, are lost in time.
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Proofs and Puzzles to Ponder

| What’s a Theorem? ]

WITHOUT STOPPING TO think about it, try to guess how
many formal theorems are published yearly in mathematical jour-
nals. A hundred? A thousand? 'Ien thousand?! Stanislaw Ulam
disabuses us of our innocence in his autobiography Adventures of
a Mathemarician.

At a talk which I gave at a celebration of the twenty-fifth
anniversary of the construction of von Neumann’s com-
puter in Princeton a few years ago, 1 suddenly started es-
timating silently in my mind how many theorems are
published yearly in mathematical journals. I made a quick
mental calculation and came to a number like one hundred
thousand theorems per year. I mentioned this, and my au-
dience gasped. The next day, two of the younger mathe-
maticians in the audience came to tell me that, impressed
by this enormous figure, they undertook a more systematic

[32]
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and detailed search in the Institute library. By multiplying
the number of journals by the number of yearly issues, by
the number of papers per issue, and the average number
of theorems per paper, their estimate came to nearly two
hundred thousand theorems a year. If the number of theo-
rems is larger than one can possibly survey, who can be
trusted to judge what is ‘important’> One cannot have sur-
vival of the fittest if there is no interaction.

Two hundred thousand theorems a year! On July 3, 1993 —
shortly after Wiles’s proposed proof—Science News noted that
“Fermat’s last theorem may finally live up to its common des-
ignation as a theorem.”” But just what 7s a theorem? We’ll start
at the beginning.

What'’s an Axiom? What’s a Postulate? The mathematical dis-
tinction between these two words is insignificant, and most
mathematicians use them almost interchangeably. Often,
they’ll use the term ‘“‘axiom’ when they personally agree with
the principle in question, and they’ll use the term ““‘postulate”
when they feel less charitable. Either way, an axiom or pos-
tulate is an initial assumption that is accepted as true without
proof, and from which conjectures are derived.

What's a Theorem? A theorem is a conjecture that has been
proved in a formal argument using axioms and other theo-
rems. (Without a proof, F.L.T. more properly should have
been called “Fermat’s Last Conjecture,””) which explains the
remark in Science News. There are different varieties of theo-
rems. Some are more substantial than others, some are fa-
vored more or less, and some have certain characteristics.

A “uniqueness theorem,” for example, shows that one—
and only one—mathematical entity satisfies a particular con-
dition. Often, this is proved by assuming more than one so-
lution and showing that this leads to a contradiction,

An “‘existence theorem’ shows only that some mathematical
entity satisfies a particular condition. The proof may be indi-
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rect, and it need not actually produce the entity, but it must
show that there is such a solution.

[ Wkhkar’s a Proof? ]

Some mathematicians object philosophically to existence
theorems, or “‘existence proofs,” as they’re also known, be-
cause they’re ‘‘nonconstructive proofs.” They demand a
“constructive proof”’ instead. A constructive proof not only
shows that one (or more) mathematical entity satisfies a partic-
ular condition, it also actually produces it (or them). Not sur-
prisingly, constructive proofs are often much longer, more
complex, and harder to formulate than existence proofs.
There are several varieties of these, also. Perhaps the most
popular compromise is known as the intuitionist view. It de-
mands a certain limited kind of constructive proof, but *“proof
by contradiction” is strictly not permitted.

A “proof by contradiction” (also called “proof by double
negation’’) is a weaker proof and is rejected entirely by some.
It proves a theorem by assuming that the conjecture is false
and finding that this leads to a contradiction. This is also
known as ‘‘reductio ad absurdum.”’ When a contradiction is
found, the conjecture is then proved to be true.

“Proof by double negation” is fraught with dangers. For ex-
ample, let’s say the human animal can see only in black and
white. ('To make this point, let’s also assume that nothing is
gray.) We want to prove that an object is white, so we manage
to prove that it isn’t black. By double negation, the object is
proved to be white. But considering all the colors of the rain-
bow, this shouldn’t be a valid proof. Maybe the object is red.
But how would we know it?

Reductio ad absurdum is-an ““indirect proof.” Its opposite is
known as a ‘““direct proof,” which satisfies the most stringent
requirements. Proof devolves by a step-by-step process based
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on axioms or other theorems, especially theorems also proved
by direct means.

An effort to maintain high standards is sometimes not pos-
sible, often not practical, and too often not profitable. Philip
Davis and Reuben Hersh make the following comments in
their book The Mathematical Experience.

The actual situation is this. On the one side, we have real
mathematics, with proofs which are established by “con-
sensus of the qualified.” A real proof is not checkable by a
machine, or even by any mathematician not privy to the
gestalt, the mode of thought of the particular field of math-
ematics in which the proof is located. Even to the ‘quali-
fied reader,’ there are normally differences of opinion as to
whether a real proof (i.e., one that is actually spoken or
written down) is complete or correct. These doubts are
resolved by communication and explanation, never by
transcribing the proof into first-order predicate calculus.
Once a proof is “accepted,” the results of the proof are
regarded as true (with very high probability). It may take
generations to detect an error in a proof.

Not very reassuring, is it? Another common misperception is
to be more impressed by longer proofs than by shorter ones.
This may come from mistakenly equating length with diffi-
culty instead of with technicality. (The analogy that comes to
mind is a Rube Goldberg—like contraption that consists of a
wildly complex machine, a whole kitchenful of apparatus to,
say, make a pot of coffee. If that’s the only way it can be
made, it makes sense to be pleased with it, but it doesn’t
make sense to be impressed by its sheer size alone.) And with
inductive proofs, the longer ones—especially those that run to
hundreds of pages—are actually weaker than shorter ones.
The following are some informal examples of *““proofs.”



[36] THE WORLD’S MOST FAMOUS MATH PROBLEM
[ Faulry ““Proofs’’ ]

Martin Gardner puts forth the following “‘proof” of the paral-
lel postulate in Wheels, Life and Other Mathematical Amusements.

A simple proof of the parallel postulate uses the diagram
shown [below]. AB is the given line and C the outside
point. From C drop a perpendicular to AB. It can be
shown, without invoking the parallel postulate, that only
one such perpendicular can be drawn. Through C draw EF
perpendicular to CD. Again, the parallel postulate is not
needed to prove that this too is a unique line. Lines EF
and AB are parallel. Once more, the theorem that two
lines, each perpendicular to the same line, are parallel is a
theorem that can be established without the parallel pos-
tulate, although the proof does require other Euclidean as-
sumptions (such as the one that straight lines are infinite
in length) that do not hold in elliptic non-Euclidean ge-
ometry. Elliptic geometry does not contain parallel lines,
but given Euclid’s other assumptions one can assume that
parallel lines do exist.

We have apparently now proved the parallel postulate.
Or have we?

A D B

A “proof” of the parallel postulate
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No, we haven’t. This is Gardner’s explanation:

The proof is valid in showing that one line can be con-
structed through C that is parallel to AB, but it fails to
prove that there is only one such parallel. There are many
other methods of constructing a parallel line through C;
the proof does not guarantee that all these parallels are the
same line. Indeed, in hyperbolic non-Euclidean geometry
an infinity of such parallels can be drawn through C, a pos-
sibility that can be excluded only by adopting Euclid’s fifth
postulate or one equivalent to it. Elliptic non-Euclidean
geometry, in which #zo parallel can be drawn through C, is
made possible by discarding, along with the fifth postu-
late, certain other Euclidean assumptions.

This next “‘proof” that 2 = 1 is also faulty, of course.

Let’s start with the simple

. A=B
equation:
Multiply both sides by A: A*=AB
Sub.tract B? from both Az — B2—AB — B2
sides:
Factor both sides: (A+ B)Y(A - B)=B(A — B).
Divide both sides by _
(A — B): A + B=B
As we know that
B+ B=B
A = B, this means:
Add the 2 B’s: 2B=B
Divide by B: 2=1

What's interesting about this faulty proof is that it illustrates
the problem encountered with more subtle errors. Notice that
at one point, we divided both sides of the equation by (A —
B), which is usually perfectly permissible. However, because
A and B were equal in this case, A minus B equals zero, and
dividing by zero is not a permitted mathematical operation.
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It seems obvious in retrospect, but consider the problems
with detecting truly subtle errors that occur in long, intricate
calculations that describe concepts completely theoretical in
nature. In the above case, the error would be difficult to de-
tect if we didn’t know that A = B. How would we find the
error otherwise?

[ Impractical Proofs ]

There are also plenty of ingenious concepts that seem to work
perfectly well in theory, but are worth little in practice. Here’s
an example:

You’d like to move to a desert island and take your set of
encyclopaedia along with you, but your parachute has no
place for baggage. How can you carry the entire set in your
pocket?

Let’s say there are fewer than a thousand different letters
and numerals (and so forth) in the encyclopaedia. You simply
assign them each a code number from 001 through 999, as-
signing a number to the space between words, too, and any
other symbols that are necessary. (For example, the word “‘a”
could be encoded as 001, the word “at’ could be encoded as
001020, and the word “ate’ could be encoded as 001020005.)
Next, you write down all these code numbers, making one
immense number, and then place a decimal point in front of
it to make the number a decimal fraction. (The word ‘‘ate”
would become .001020005.) Now take a little ten-centimeter
ruler and make a mark on it, dividing it into two parts,
segment A and segment B, such that the fraction A/B
is equal to the decimal fraction. (Such as A/B = 2.4/7.6 =
.31578947368 . . . ) When you get to the desert island, you
look (carefully!) at the lengths of A and B, then compute the
fraction A/B, and the code for the entire encyclopaedia will
be in front of you.

(Then again, consider how a few years ago, it would have
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seemed ridiculous to find all twelve volumes of the original
Oxford English Dictionary, an immense amount of material,
encoded onto a single compact disc, a copy of which I have
here at my desk.)

[ Branching Proofs ]

The following problem sounds easy at first, but quickly be-
comes ponderous due to the branching nature of the solution.
It gives a glimpse into the many paths that must all be fol-
lowed in order to pin down a proof, and the sheer length of it
is remarkable. (However, this is not an example of a lengthy
proof, which follows point after point in a much more serial
fashion.) Here’s the problem:

You have twelve balls that appear identical, except that one
is slightly heavier or lighter than the others. Using only a
balance scale, you have three weighings to discover which
is the “odd ball” and whether it’s lighter or heavier.

And here’s the answer:

For the first weighing, put two groups of four balls in
each pan of the scale. Set the remaining four aside. If the
scale balances, continue with (A) If the First Weighing Bal-
ances. If it doesn’t, skip directly to (B) If the First Weighing
Doesn’t Balance.

(A) If the First Weighing Balances:

If the first weighing balances, you know all of those
eight balls are normal. For the second weighing, leave just
three of these normal balls on one side of the scale, put
the other five normal balls away, and put three unknown
balls (from the four you set aside) on the other side of the
scale. If it balances again, read Number 1 below. If it
doesn’t balance, read Number 2.

1. If the second weighing balances. Now you know the last
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unknown ball (from the original four you set aside) is the
odd ball. For the third weighing, leave just one normal ball
on one side of the scale, take the additional five normal
balls off the scale and put them away, and put the last
unweighed odd ball on the other side. It either will rise or
fall, telling you whether it’s light or heavy. That’s the an-
swer for this sequence.

2. If the second weighing doesn’t balance. But now you know
whether the odd ball is light or heavy, because the group
(on the scale) where it’s hidden either rose (if it’s light) or
fell (if it’s heavy). For the third weighing, first put away all
the normal balls, then take that “odd group” of three al-
ready on the scale and separate them all, putting one on
each side of the scale and leaving one aside.

Maybe the scale will balance again. If it does, you’ll
know that the last ball you set aside is the odd ball, and
because you already know whether it’s light or heavy,
that’s the answer for this sequence of events.

Or maybe the scale will tile. If it does, this will show you
which is the odd ball because you already know that it’s
either light or heavy. If it’s light, the odd ball is the one
that rises, and if it’s heavy, the odd ball is the one that
falls. And that’s the answer for this sequence of events.

(B) If the First Weighing Doesn’t Balance

Now things are going to get a little more complicated to
describe, so let’s number the balls. Numbers 1, 2, 3, and
4 will be the ones on the lower side of the scale, and Num-
bers 5, 6, 7, and 8 will be the ones on the higher side. The
odd ball must be among these eight. Numbers 9, 10, 11,
and 12 will be the ones that have been set aside, so these
four must all be normal. That much we know.

For the second weighing, leave Number 1 on the same
side (previously lower) of the scale and put Numbers 2, 3,
and 4 aside. Instead of those three, substitute Numbers 6,
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7, and 8 (three of the ones that were previously on the
higher side of the scale). Leave Number 5 on the same side
of the scale (previously higher), but add three normal balls
(from the original group of four you set aside; we won’t
need the last normal one any more). At this point, you have
Numbers 1, 6, 7, and 8 on what was previously the lower
side, and you have Numbers 5, 9, 10, and 11 on what was
previously the higher side. Number 12 can be tossed into
the closet.

The scale must now do one of three things: It will bal-
ance, it will tip in the opposite direction as it did before,
or it will tip in the same direction it did before.

L. If the second weighing balances. Now you know that
Numbers 2, 3, and 4 (newly set aside) contain a heavy odd
ball. Why? Because when they were on the scale in the
first weighing, they pulled it down against others now
proven to be normal. For the third weighing, put away all
the normal balls, then take that odd group of three cur-
rently set aside and separate them all, putting one on each
side of the scale and leaving one aside again.

Maybe the scale will balance again. If it does, you'll
know that the last ball you set aside is the odd ball, and
because you already know it’s heavy, that’s the answer for
this sequence of events.

Or maybe the scale will tilt. If it does, this will show you
which is the odd ball, because you already know that it’s
heavy. And that’s the answer for this sequence of events.

2. If the second weighing tips in the opposite direction. Now
you know that Numbers 6, 7, and 8 (which changed posi-
tions on the scale) contain a light odd ball. Why? Because
Numbers 1 and 5 didn’t change positions, and the others
on the scale are known normal. For the third weighing, put
away all the normal balls, then take that odd group of three
currently on the scale and separate them all, putting one
on each side of the scale and leaving one aside.
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Maybe the scale will balance again. If it does, you’ll
know that the last ball you set aside is the odd ball, and
because you already know that it’s light, that’s the answer
for this sequence of events.

Or maybe the scale will tilt. If it does, this will show you
which is the odd ball because you already know that it’s
light. And that’s the answer for this sequence of events.

3. If the second weighing tips in the same direction. Now you
know that Numbers 1 or 5 is the odd ball. Why? Because
they’re the only ones on the scale that didn’t change posi-
tion. If the odd ball were among Numbers 6, 7, and 8, the
scale would have reversed, and the others on the scale are
known to be normal. In addition, you know that either
Number 1 is heavy or Number 5 is light because that’s the
direction in which the scale tips.

For the third weighing, clear everything from the scale.
Then put one normal ball on one side and Number 1 on
the other.

Maybe the scale will balance again. If it does, you’ll
know that Number 5 is the odd ball, and because you al-
ready know that it’s light, that’s the answer for this se-
quence of events.

Or maybe the scale will tilt downward toward Number 1.
If it does, you’ll know that Number 1 is the odd ball, and
because you already know that it’s heavy, that’s the answer
for this sequence.

[ Philosophical Proofs ]

Let’s think about wheels again, but this time from the per-
spective of confirmation theory. Suppose I see half a dozen
wheels that are round, and I conjecture that ““All wheels are
round.” Then I see half a dozen more, all of which are round,
too. The conjecture is weakly confirmed. And if I see thou-
sands and thousands of wheels, all of them round, the conjec-
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ture is more strongly confirmed. But it’s not fully confirmed.
Maybe there are some wheels that aren’t round, but I just
haven’t seen any.

What about a paper clip? Can this be a confirming instance
of my conjecture? At first, a paper clip seems to have nothing
to do with it, but consider this. Here’s another way of stating
the wheels conjecture that is logically equivalent. ““All objects
that aren’t round are not wheels.” Then I find a paper clip,
which isn’t round and isn’t a wheel, either. Clearly, this is a
confirming instance of the logically equivalent conjecture of
“All objects that aren’t round are not wheels.”” For that reason,
it must also confirm the original conjecture of ““All wheels are
round.” Apparently, it’s not going to be hard to prove my orig-
inal conjecture because I simply can look around my office
and find dozens of objects that aren’t round that are not
wheels. (Thousands, actually. I have whole boxes full of pa-
per clips nearby.)

But we shouldn’t stop here. Let’s say that we decide that a
paper clip is a confirming instance of the original conjecture,
but only to a minuscule degree. (This is what the original
theorist, the German-born American philosopher Carl Gustav
Hempel, believed.) Let’s even say that some confirming in-
stances (like finding a round wheel) count for more than oth-
ers (like finding a paper clip). Then let’s try a new conjecture
entirely: “All wheels are square.” Here’s another way of stat-
ing the new conjecture that is logically equivalent. *‘All ob-
jects that aren’t square are not wheels.” Then I find a paper
clip, which isn’t square and isn’t a wheel, either. Clearly, this
is a confirming instance of the logically equivalent conjecture
of “All objects that aren’t square are not wheels.” For that
reason, it must also confirm the original conjecture of ““All
wheels are square.”

But this means that finding a paper clip confirms that *“All
wheels are round,” and “All wheels are square,” simultane-
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ously! How can that be? (Now you know why these issues are
not black and white. Or would that be “white and black’?)

[ Whar Is Mathematical Truth? |

That’s a little trickier to define. In 1900, David Hilbert,
one of the most famous and respected mathematicians of the
day, offered a list of unsolved problems to his colleagues at
the International Congress of Mathematicians in Paris. The
twenty-third was a challenge to discover a precise method for
determining the truth (or falseness) of any given statement in
formal logic. The issue was settled, in a fashion, some thirty-
six years later, but surely not in the way Hilbert originally had
anticipated. After all, if such a method for determining the
truth were found, it would seem to reduce the science of
mathematics to mere mechanical computation. No wonder
few mathematicians wished to champion that cause.

"Two developments finally closed Hilbert’s line of inquiry.
First, Bertrand Russell, the British philosopher and mathe-
matician, discovered a paradox in the elementary theory of
sets in 1901, just as Gottlob Frege, the German philosopher
and mathematician, was about to publish his Fundamental
Laws of Arithmetic, which not only depended upon the theory
of sets, but would have furthered Hilbert’s investigation. Ac-
cording to the May 1984 issue of Scientific American, ‘‘Frege
ended the volume with a dispirited note: ‘A scientist can
hardly meet with anything more undesirable than to have the
foundation give way just as the work is finished. I was put in
this position by a letter from Mr. Bertrand Russell when the
work was nearly through the press.”

Then Kurt Gédel, of the Institute for Advanced Study in
Princeton, New Jersey, dealt the final blow. In the May 1984
issue of Scientific American, it was noted that ‘“‘he proved that
any consistent system of formal logic powerful enough to for-
mulate statements in the theory of numbers must include true
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statements that cannot be proved. Because consistent axio-
matic systems such as the one devised by Russell and [Alfred
North] Whitehead [the English mathematician and philoso-
pher] cannot encompass all the true statements in the subject
matter they seek to formalize, such systems are said to be
incomplete.” One wonders whether Goédel’s logic could be
applied to his own argument, like a dog chasing its tail, thus
“proving” itself invalid.

So much for the truth. The search for it has never recovered
from this defeat. Raymond Wilder addressed the subject in
his book Fuvolution of Mathematical Conceprs.

As a peculiarly Greek mode of thought, logic lay at the
very heart of the axiomatic method. And it need hardly be
pointed out what the ascendance of logic in mathematics
has meant to mathematics. Moreover, its importance in
methods of proof is so great that ultimately some came to
insist that mathematics is really an extension of logic, main-
taining that the essence of mathematcs is logical
deduction. . . . However, it seems safe to say that this point
of view has not many supporters today.

. . . [After the advent of non-Euclidean geometries] The
dual character of mathematics was retained; mathematics
was still an instrument for scientific investigation, but on
the conceptual side, it now achieved a freedom that it did
not know before. This was freedom accompanied by a con-
viction that it was no longer restrained by either an ideal
or an external world, but that it could create mathematical
concepts without the restrictions that might be imposed by
either the world of experience or an ideal world of “truth”
to whose nature one was committed to limit his discover-
ies. This feeling of freedom was not entirelv justified, but
for the time being, it was a grand tonic.
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Mathematical Mysteries, Solved and
Unsolved

[ The Parallel Postulate ]

THE GRANDEST OF passions are evoked by mathematical
mysteries, as evident in the following quote from a letter in
Philip Davis and Reuben Hersh’s book The Mathematical Experi-
ence. In it, the Hungarian mathematician Farkas (Wolfgang)
Bolyai was advising his son J4dnos Bolyai, also a mathematician
and who would one day become a very famous one indeed, not
to spend any more time pursuing his course on the notorious
“parallel postulate (Euclid’s fifth axiom).”

For God’s sake, please give it up. Fear it no less than the
sensual passions because it, too, may take up all your time
and deprive you of your health, peace of mind, and hap-
piness in life.

H. Meschkowski’s book FEvolution of Mathematical Thought
quotes additional tortured pleas from father to son.

[46]
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You must not attempt this approach to parallels. I know
this way to its very end. I have traversed this bottomless
night, which extinguished all light and joy of my life. I
entreat you, leave the science of parallels alone . . . I
turned back when I saw that no man can reach the bottom
of this night. I turned back unconsoled, pitying myself and
all mankind. . . .

... It seems to me that I have been in these regions; that
I have travelled past all reefs of this infernal Dead Sea and
have always come back with broken mast and torn sail.
The ruin of my disposition and my fall date back to this
time. I thoughtlessly risked my life and happiness—ant
Caesar aut nikil.

Oh, the pain of it all! In Fyodor Dostoyevsky’s novel Tke
Brothers Karamazov, lvan (speaking to his brother) is very firm
about his position.

But there’s this that has to be said: if God really exists and
he really has created the world, then, as we all know, he
created it in accordance with the Euclidean Geometry, and
he created the human mind with the conception of only
three dimensions of space. And yet there have been and
there still are mathematicians and philosophers, some of
them indeed men of extraordinary genius, who doubt
whether the whole universe, or, to put it more widely, all
existence, was created only according to Euclidean geom-
etry, and they even dare to dream that two parallel lines
which, according to Euclid, can never meet on earth, may
meet somewhere in infinity. I, my dear chap, have come
to the conclusion that if I can’t understand even that, then
how can I be expected to understand about God? . . . Let

. the parallel lines meet, and let me see them meet,
myself—1I shall see, and I shall say that they have met, but
I still won’t accept it.
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The parallel postulate has probably caused mathematicians
more grief than anything in their history. Indeed, it was the
failure of Wolfgang Bolyai (quoted at the beginning of this
section) or his son to prove the parallel postulate that led Janos
to independently develop hyperbolic geometry (along with
the German mathematician Carl Friedrich Gauss and the Rus-
sian mathematician Nikolai Lobachevsky), which allows an
infinite number of parallels. (The German mathematician
Georg Friedrich Bernhard Riemann developed elliptic geom-
etry, which allows none.)

In his book Wheels, Life and Other Mathematical Amusements,
Martin Gardner adds, “The eighteenth-century French ge-
ometer Joseph Louis Lagrange was convinced that he had pro-
duced such a proof. . . . In the middle of the first paragraph
of a lecture to the French Academy on his discovery, however,
he suddenly said, I/ faut que j'’y songe encore’ (1 shall have to
think it over again), put his papers in his pocket, and abruptly
left the hall.”

This is not an idle pursuit, by any means. Because the gen-
eral theory of relativity requires a non-Euclidean universe,
one could shatter Einstein’s work by exposing a contradiction
in non-Euclidean geometry, which would be accompllshed by
a proof of the parallel postulate.

[ Aristorlie’s Wheel ]

Another mind-bending problem is the Greek philosopher Ar-
istotle’s wheel paradox. Modern mathematicians are not trou-
bled by this one, but nearly everyone else is, though.! It dates
back to Aristotle’s time, when it was first mentioned in the
Greek Mechanica, later attributed to him. This paradox was

! The resolution of the paradox lies with the concept of densities of infini-
ties and the correspondingly unique qualities of transfinite numbers; the
number of points on any segment of a curve is described by the second of
the transfinite numbers, known as aleph-one.
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studied by numerous prominent mathematicians, including
Galileo in the sixteenth century, Descartes in the seventeenth
century, and Fermat himself.

o) ( O

D
B

Aristorle’s wheel

As the larger wheel rolls along from point A to point B, the
smaller wheel rolls along a parallel line from point C to point
D. Let’s assume that the larger wheel rolls along from point
A to point B withourt slipping. (We make this assumption to
define one of the two related problems. As Martin Gardner
puts it in Wheels, Life and Other Mathematical Amusements, “‘If
the two lines are actual tracks, the double wheel obviously
cannot roll smoothly along both. It either rolls on the upper
track while the large wheel continuously slides backward on
the lower track, or it rolls on the lower track while the small
wheel slips forward on the upper track. This is not, however,
the heart of the paradox.”)

At any given moment in time, there is a singular point on
the perimeter of the large wheel touching the line AB, and at
that same moment in time, there is a singular point on the
perimeter of the small wheel touching the line CD. That is,
every point on the large wheel can be associated with every
point on the small wheel and vice versa. This appears to prove
that the two perimeters are the same length. Clearly, thatisn’t
true, and this is a good example of how a seemingly correct
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proof can be very much in error. In the above case, the fact
that the proof is in error is obvious visually, if not intellectu-
ally. But as the proof becomes longer and more complicated,
errors become progressively more difficult to locate and may
even be impossible to detect, especially in theoretical terri-
tory.

[ Zeno’s Achilles ]

The Greek philosopher Zeno loved to confound his contem-
poraries by posing seemingly unsolvable paradoxes, which he
did in abundance. However, the one most often cited is the
paradox known as ‘““‘Achilles.” Suppose that Achilles and a tor-
toise agree to run a race with each other. Achilles can run ten
times as fast as the tortoise, but he gives the tortoise a 100-
meter start. As Zeno put it, Achilles runs 100 meters and ar-
rives at the place where the tortoise started. Meanwhile, the
tortoise has run 10 meters and is therefore that far ahead of
Achilles. While Achilles runs that 10 meters, arriving at the
place where the tortoise was, the tortoise has run one meter
and is that far ahead of Achilles. And while Achilles runs that
one meter, arriving again at the place where the tortoise was,
the tortoise has run one-tenth of a meter more and is still that
far ahead of Archilles. (You know where this leading, don’t
your)

Let’s stop here. This reasoning appears to prove that Achil-
les will never catch up with the tortoise —that the tortoise will
always be ahead by some distance even if that distance is in-
finitesimally small. But again, that clearly isn’t true, and this
is another good example of a faulty proof. The fact that the
proof is in error is obvious; we know that Achilles will even-
tually pass up the tortoise. But how? And how would we pos-
sibly see this sort of error if it dealt with concepts that don’t
exist in the real world?

In this case, the key is the concept of time. However fast or
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slow they run, time will pass. Assign any time (see below for
an example), and you’ll discover that Achilles overtakes the
tortoise at 111.111 (and so on) meters. The repeating deci-
mals may seem to preclude a final answer, but the understand-
ing that they simply represent the fraction Y% makes it easier
to accept. You can easily envision % of a pie; that same slice
is represented by the number 0.111 (and so on).
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Another of Zeno’s paradoxes is called ““The Dichotomy,”
which can be illustrated with a runner. She starts running at a
steady pace, but before she gets to the finish line, she must
arrive at the halfway point. Then she must arrive at the %
mark, which is half of the remaining distance. Then she must
arrive at the 78 mark, half of the remaining distance. And then
she must arrive at the %16 mark, half of the remaining distance
again. As she always has another halfway point ahead of her,
how will she ever get to the finish line?

This reasoning appears to prove that she never will, but we
know that isn’t true. Again, the key is time. Let’s suppose the
runner takes a minute to run each half-distance; she gets
closer and closer to the finish line, but she never arrives there,
as in (A). This reasoning is incorrect. The runner cannot take
a minute to run each half-distance because she would be slow-
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ing down if she did; instead, she runs at a steady pace (each
half-distance is run in half the time it took to run the previous
one) as in (B). If she takes a minute to run the first half of the
race, she’ll take a minute to run the second half of the race.

- =
// |1
Distance Distance
(A) (B)
“The Dichotomy”

However, even these time-related proofs are not as satisfy-
ing as they could be. Zeno could argue that just as there is
always another halfway point in distance, there is always an-
other halfway point in time, and that’s certainly true. In fact,
as recently as 1914, Bertrand Russell, the British philosopher
and mathematician, argued very effectively in his book Our
Knowledge of the External World (and many agree with him) that
Zeno’s paradoxes were not convincingly answered until Georg
Cantor, the German mathematician, revolutionized mathe-
matics with his work on transfinite numbers and set theory.
(See previous footnote.)

[ Zeno’s Arrow |

The third of Zeno’s paradoxes is known as ‘““T'he Arrow.”
Zeno argued that an object, illustrated by an arrow, can either
stand still or it can move. If it’s standing still, it occupies a
space of its own length. Yet this seems to be the case even
when the arrow is flying through the air—it always occupies a
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space of its own length. ('Today’s camera technology captures
this argument on film. If several rapid photographs of a flying
arrow are taken with a fast-enough shutter speed, the arrow
will appear quite still in each, but it will have moved from
point to point to point.) So the paradox is that there are two
axioms that are both true but that seem to contradict each
other: An arrow in flight always occupies a space of its own
length, but an object that always occupies a space of its own
length is standing still. How can the arrow be in motion and
standing still at the same time?

Again, Cantor comes to the rescue with transfinite numbers
and set theory, but in a less satisfying manner. After all, a
photograph of a moving arrow and a still arrow (say, suspended
by invisible threads) do look exactly the same. In short, the
literature on this paradox is voluminous, and it seems there
are no easy answers. 'The jury is still out on this one.

[ Zeno's Stadium ]

The fourth (and least known) of Zeno’s paradoxes is called
“The Stadium,” but it has been handed down to us in frag-
mentary form and is difficult to describe without a bit of imag-
inative reconstruction. Suffice it to say that it involves four
stationary bodies of equal dimensions, with four moving bod-
ies heading to the right of them and four more moving bodies
heading to the left of them, passing each other in the process.
This is the most controversial of the paradoxes, and if you’re
interested in a fuller explanation, you’'ll find it in Wesley Sal-
mon’s book called Zeno’s Paradoxes, in which he makes this
comment:

Zeno’s paradoxes have an onion-like quality; as one peels
away outer layers by disposing of the more superficial dif-
ficulties, new and more profound problems are revealed.
For instance, as we show that it is mathematically consis-
tent to suppose that an infinite series of positive terms has
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a finite sum, the problem of the infinity machines arises.
When we show how the infinity machines can be handled,
the problem of composing the continuum out of unex-
tended elements appears. When charges concerning the
consistency of the continuum are met, the problem of
identity of structure between the mathematical continuum
and the continuum of physical times confronts us. And so
on. Will we ever succeed in stripping away all of the layers
and providing a complete resolution of all the difficulties
that arise out of Zeno’s paradoxes? And if we should suc-
ceed, what would be left in the center? In a certain sense,
nothing, it would seem. We will not find a metaphysical
nutmeat . . . or any other fundamental truth about the
nature of reality. However, we should not conclude that
nothing of value remains. The layers we have peeled away
have in them the elements of a nourishing philosophical
broth. The analysis itself, dealing in detail with a host of
fundamental problems, is richly rewarding in terms of our
understanding of space, time, motion, continuity, and in-
finity. We would be foolish indeed to conclude that the
onion was nothing but skin, and to discard the whole thing
as worthless.

It would, of course, be rash to conclude that we had ac-
tually arrived at a complete resolution of all problems that
come out of Zeno’s paradoxes. Each age, from Aristotle on
down, seems to find in the paradoxes difficulties that are
roughly commensurate with the mathematical, logical, and
philosophical resources then available. When more power-
ful tools emerge, philosophers seem willing to acknowl-
edge deeper difficulties that would have proved
insurmountable for more primitive methods. We may have
resolutions which are appropriate to our present level of
understanding, but they may appear quite inadequate
when we have advanced further. The paradoxes do, after
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all, go to the very heart of space, time, and motion, and
these are profoundly difficult concepts.

Or, has the onion infinitely many layers? If so, we may
be faced with an infinite sequence of tasks that does defy
completion in a finite time, for the steps become longer,
not shorter, as the difficulties become deeper.

The following classic problems remain unsolved.

[ Kepler’s Spheres ]

Johannes Kepler, the German astronomer, asked this ques-
tion: If we’re given more than enough spheres to fill a given
volume of space, what would be the most efficient way to pack
them into that space? Many of us would guess that the best
way would be to pack the bottom layer in rows and then pack
the next layer by putting a sphere in each of the little spaces
made by every three or four spheres beneath it, nesting them
back and forth like this row after row. But is that really the
best way to fit in the greatest number?

| Goldbach’s Conjecture ]

Christian Goldbach, the German-Russian mathematician,
suggested that every even number greater than 2 was the sum
of two prime numbers, for example, 4 = 2 + 2;6 = 3 + 3;
8 = 3 + 5, and so forth. No one has ever been able to prove
that Goldbach was correct, nor has anyone ever been able to
find an exception to his rule.

[ The Twin Prime Conjecture }

Is there an infinite number of “twin primes’ (pairs of prime
numbers with a difference of 2)? These would be pairs of
primes such that one prime + 2 = another prime, for exam-
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ple, 3 (prime) + 2 = 5 (also prime); 5 (prime) + 2 = 7 (also
prime); 11 (prime) + 2 = 13 (also prime).

[l Another Prime Conjecture ]

Is there an infinite number of primes of the form n? + 1 where
n is an integer? Or do they end somewhere?

Although these problems are the most famous, they aren’t
the last of the classic unsolved problems. In fact, even Fermat
has another! (The details are in Chapter Five.)
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What Comes Next

[ Why Ir Al] Matters ]

PEOPLE HAVE ALWAYS loved to solve problems, and the
people of Fermat’s time were no exception. The following vol-
ume, written by Jean Leurechon, a French Jesuit writing under a
pen name, went through more than thirty editions between 1624
and 1700. This was the title of the first English translation in
1633, just four years before the date Fermat is believed to have
made his notorious marginal note.

Mathematicall Recreations, or a Collection of Sundrie Problemes,
Extracted Out of the Ancient and Moderne Philosophers, as Se-
crets in Nature, and Experiments in Arithmeticke, Geometrie,
Cosmographie, Horologographie, Astronomie, Navigation, Mu-
sicke, Opticks, Architecture, Staticke, Machanicks, Chimestrie,
Waterworkes, Fireworks, etc., not Vulgarly Made Manifest Unti!
This Time . . . Most of Which Were Written First in Greeke and
Latine, Lately Compiled in French, by Henry Van Etten Gent.

[57]
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And Now Delivered in the English Tongue with the Examina-
tions, Corrections, and Augmentations.

But non-mathematicians would be mistaken to think that
the challenge in proving F.L.T. lay in the Mount Everest sort
of life philosophy—one does it “‘just because it is there.”” And
it’s no game or idle pleasure. Wiles’s proof may make the
work of other number theorists irrelevant and may have many
applications in the field of number theory, which is used in
the development of computer technology and security codes.
In his article entitled “Number Theory as Gadfly,” Mazur
makes the following comment:

Despite the fact that [Fermat’s last theorem’s] truth hasn’t
a single direct application (even within number theory!) it
has, nevertheless, an interesting obligue contribution to
make to number theory; its truth would follow from some
of the most vital and central conjectures in the field.

On June 24, 1993, a day after Wiles announced his proof in
Cambridge, The New York Times quoted Mazur further:

A lot more is proved than Fermat’s last theorem. One could
envision a proof of a problem, no matter how celebrated,
that had no implications. But this is just the reverse. This
is the emergence of a technique that is visibly powerful.
It’s going to prove a lot more.

For one thing, although much of abstract mathematics
seems to be about building castles in the air, that too is not
without purpose—although the purpose is not necessarily
known ahead of time. Every mathematician hopes that his or
her work will find concrete application, if not in modern tech-
nologies, then perhaps in modern cosmologies. Einstein’s
universe is only one example. On June 24, 1993, Reuter’s re-
ported that Goddard had pointed out that “solving the theo-
rem had no obvious practical application, but commented that
the same was said initially about splitting the atom.”
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For another thing, the concept of isomorphism (or mathe-
matical equivalence) is one of the most fruitful concepts in
mathematics. Wiles’s proof may have similarly great impact,
as many other mathematicians’ proofs already have, reverber-
ating far beyond its original locus. Sometimes an intransigent
problem will yield to a solution by transposing it into an iso-
morphic one that already has been solved. One of the best-
known examples in modern times is the famous four-color
map theorem. When it was proved in 1976, numerous other
important (and isomorphic) conjectures were proved true. In
other words, this wasn’t simply an amusement for cartogra-
phers.

The four-color map theorem was posed back in 1850 and
attained public recognition well before the turn of the cen-
tury. The problem is this: How many different colors are nec-
essary to color any map in such a way so that no two adjoining
areas are alike? Four colors seemed a likely answer, but are
four colors always sufficient? That is, can a map be drawn for
which five colors are necessary? It wasn’t until 1976 that math-
ematicians managed to prove that four colors will suffice for
all possible configurations, and it took them hundreds of
pages to do so. (Wiles’s proof, by contrast, was “only” two
hundred pages long. Surely, mathematicians must be among
the most persevering and best-organized of professionals—at
least at the office.)

And F L.'T. itself is too narrow a focus. According to the July
2, 1993, issue of Science, ‘‘Most number theorists had aban-
doned [the search for a proof for Fermat’s last theorem] as a
quixotic quest—. . . one with little payoff beyond the theo-
rem itself. Unlike many other famous unsolved problems in
mathematics, Fermat’s last theorem has no particularly impor-
tant consequences.’’ But the magazine added, . . . while Fer-
mat’s last theorem has little practical importance, the
"Taniyama-Weil conjecture has been of keen interest to num-
ber theorists since the mid-1950’s, because, if true, it would
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provide a powerful tool for studying the number-theoretic
properties of elliptic curves, which themselves are fundamen-
tal in many parts of number theory.”

[ Why Wiles’s Proof Isn’t as Satisfying as
It Could Be ]

But as far as Fermat is concerned, Wiles’s proof isn’t as satis-
fying as it could be. In addition to the issues raised in Chapter
One of this book, other points should be considered. For one
thing, mathematicians are reported to have said that the logic
of the proof is persuasive because it is built on a carefully
developed edifice of mathematics that goes back more than
thirty years and is widely accepted. There are two main weak-
nesses here. First, thirty years is a very short time for a new
edifice, and second, how can this logic be widely accepted
when almost no one outside of a few specialists understands
it? If it is indeed accepted, it must have been accepted on
faith.

Also, how do we verify a proof with non-Euclidean geome-
tries, which state that conceptions need not seem possible?
Aren’t we likely to verify too many proofs this way?

How do we know a contradiction when we see one? And if
we believe we have a contradiction, how do we know whether
it’s a contradiction that proves the theorem or a contradiction
in the geometry in which the theorem is based?

How do we know which things are impossible and which
things merely seem impossible, but aren’t? For example, how
did Eddington know to classify his rotating bubble as possi-
bler How would he decide to rule out other conceptions
(which are impossible), but accept the rotating bubble (which
merely seems impossible)? Or is everything possible? And if not,
how do we tell the difference?

And if conceptions needn’t seem possible, proofs are only
being held to the standard of following logically from previous
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proofs, which presumably didn’t need to seem possible, ei-
ther.

There’s another philosophical point to consider. In Ribet’s
paper on the modular representations of Gal (Q/Q) arising
from modular forms (the paper in which he presents proof of
Frey, which is the foundation upon which Wiles’s proof is
built), the third to the last sentence from the end of the paper
(published in Inventiones Mathematicae in 1990) reads as fol-
lows: ““T'he Main Theorem applied inductively to p now elim-
inates all odd primes from its level.”” And, of course, Wiles’s
proof (highlights of which can be found in the Appendix) is
also inductive. Both can be considered proofs by double ne-
gation. (Mathematical induction is used especially for series
sums; it is also used in reductio ad absurdum. In these cases, a
contradiction was found, completing the proofs.)

But with contradictions inherent in the mathematical sys-
tem used in a proof, how can one ever really prove anything
by contradiction? Imaginary numbers are one example. The
square root of +1 is a real number because +1 X +1 = +1;
hewever, the square root of —1 is imaginary because -1
times — 1 would also equal +1, instead of —1. This appears
to be a contradiction. Yet it is accepted, and imaginary num-
bers are used routinely. But how can we justify using them to
prove a contradiction?

And philosophically speaking, if we can apply inductive
logic (and not deductive logic) at any point, who needs a proof
in this case? Using inductive logic, F.L.'T. is proved after
enough examples have been found, and after the last number-
crunching effort by computer, few could complain that they
haven’t.

Deductive logic (as in the Latin # priors, *“from what comes
before”) draws specific conclusions from the general case as-
sumed to be true. (For example, the classic syllogism: “All
men are mortal. Socrates was a man. Therefore, Socrates was
mortal.”’) Detectives and computers both use deductive logic.
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Inductive logic (as in the Latin @ posteriors, “from what
comes after’’) draws general conclusions from the specific
case. (E.g., ““T'he sun has come up every day that has gone
before; therefore, it will come up tomorrow.’’) Scientists rou-
tinely use inductive logic. This is the experimental method,
and it works very well with, say, biological systems. (That is,
we test a new drug thousands of times, and if it’s safe and
effective, we put it on the market.) But with F.L..'T., testing
thousands of numbers (millions, actually) was#’f good enough
to put it on the market.

But the relative merits of deductive versus inductive proofs
aside, inductive proofs have relative merits among them-
selves. 'To illustrate, let’s suppose for a moment that Fermat’s
last theorem has just been tested with modern hardware for
the first time. At your left, there’s a powerful computer and a
printout of the results, which show the theorem is true for
exponents up to four million. At your right, there’s a mathe-
matician holding a two-hundred-page document, which con-
cludes that the theorem is true for all numbers. Which do you
believe provides the greater certainty?

In short, does anyone believe Fermat’s last theorem is true
any more now than they did before June of 19937

[ A Possible Fatal Flaw ]

A possible fatal flaw in Wiles’s proof is whether the same basic
arguments could be constructed to hold true for @// exponents,
instead of just the exponents equal to or greater than 3. If it
could, the same proof would “prove’ the Pythagorean theo-
rem (x* + y? = z?) to be false.

[ A Matter of Credit ]

It’s also interesting to note the chronology of developments
related to the news story and who gets credit for what. The
links that make up the chain of proof were forged between
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1954 and 1993. But the dhronological order of the forging of
those links is not the same as the /fogica/ order. Here is the
logical order:

[ 1] Taniyama (in 1954) makes a conjecture.

[ 2] Wiles (in 1993) offers a proof of a special case of the Tani-
yama conjecture.

[ 3] Frey (in 1983) postulates a connection berween the Tani-
yama conjecture and Fermat’s last theorem.

[4] Ribet (in 1987) proves the Frey connection.
Q.E.D.—FL.T.

This suggests that if the links had followed the logical order
instead, it would be Ribet who would now be receiving the
credit for proving F. L. T. If Wiles had been faster, he would
have forged his link before Ribet’s work; if Ribet had been
slower, he would have forged his link after Wiles’s work. But
because these events came out of order chronologically, Wiles
received the credit—because he presented his proof last. That
is, if the logical sequence of events had come in chronological
order, Ribet’s work would have been the completing link in
the chain, and it would have been /is name that flashed
around the world. So it seems reasonable to say that the two
men should now be sharing the credit.

Of course, Wiles did say that he was inspired by Ribet’s
work, which implies that he might never have worked on his
link otherwise, but this inspiration may add as much to the
case for Ribet as it subtracts.

[ Wiy This Proof Wasn’t Fermat's Proof ]

But speaking of Fermat again, no one could deny that this
modern mathematical proof isn’t what he had in mind (if, in-
deed, he had a proof in mind at all), and few would deny that
this proof would have been totally unacceptable to him. (Nei-
ther should we make the mistake of crediting Fermat with
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managing to formulate—and not writing down—a proof that
would have compared to Wiles’s ingenious, imaginative effort.
My own guess is that Fermat thought he had a proof, but later
discovered he was mistaken. He was indeed mistaken about
another ‘‘theorem,” which will be detailed in forthcoming
pages.)

Wiles’ proof depends on many developments in the field of
mathematics that were unknown at the time of Fermat and his
contemporaries, including many that are recent and poorly
understood. Among the great many are Galois theory, modu-
lar forms, deformation theory, P-adic numbers, and theories
of L-functions.

[ To All the Unknown Genius in the World )

So we know the proof isn’t Fermat’s, but that’s of less interest
than the splendid, undeniable fact that Fermat’s last theorem
and other problems like it have proved (!) that mathematical
thinking has always been fascinating to the world, and the
fascination continues unabated to the present day. And many
other problems like it remain unproved. (This will continue
to be the case throughout time. Conjectures are made. Proofs
will follow. It’s in the nature of things.) In fact, Fermat him-
self had one more “theorem” (1), which will be detailed in a
very few pages.

Regardless of any individual’s particular mathematical goal,
if it were my decision to make, I would encourage each and
every attempt, both professional ¢#4 amateur. Should people
be discouraged from playing chess unless they’re members of
the United States Chess Federation? Should people be dis-
couraged from exercising unless they’re performing in the
Olympics? Should we look down upon every old man, every
lictle girl, and every mathematician who runs as hard as he or
she can in the New York Marathon?

Mental exercise keeps us fit, and hard thinking does anyone
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and everyone a world of good, regardless of whether they win
any particular prize. The people who finished dead last in the
most recent New York Marathon were just as tired as the front-
runners (more tired, actually), and they felt wonderful about
it. Would we rather that they sit on the sofa and watch the
winners cross the finish line on television, instead?

So why do people like Philip Davis and Reuben Hersh get
so many letters from oddballs? (Underwood Dudley, who has
written two books on crank proofs, calls such oddballs “Fer-
matists.”’) In their book The Mathematical Experience, they add,
“Very often, the correspondent not only ‘succeeds’ in solving
one of the great mathematical unsolvables, but has also found
a way to construct an antigravity shield, to interpret the mys-
teries of the Great Pyramid and of Stonehenge, and is well on
his way to producing the Philosophers’ Stone. This is no ex-
aggeration.”’ It’s probably because the oddballs are usually the
only ones who become convinced that they’ve found the an-
swer and decide to write!

Discovering the next ten-year-old Wiles (who was surely
only an “amateur” enthusiast for some years to follow) or the
next Ramanujan (see below) isn’t the point. The point is that
it is honorable (at the very least) to spend the better part of a
rainy weekend, whether one or more, bending one’s mind to
a highly intellectual task. There’s a very wide range of people
between mathematicians and madmen, and they all need
mental exercise.

Srinivasa Ramanujan was surely one of the most intriguing
figures in the history of mathematics, unknown to the general
public, but recognized by mathematicians as a genius without
peer. Unknown, poor, and living in a small town in his native
India, he managed to obtain a copy of George Shoobridge
Carr’s Synopsis of Elementary Results in Pure and Applied Mathe-
matics and became utterly absorbed with the subject, even to
the extent of developing his own theorems. Later, he man-
aged to secure a scholarship to the University of Madras but
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lost it because he couldn’t concentrate on his other subjects.
Jobless and penniless, he continued his work nonetheless, and
in 1913, he wrote a letter to G. H. Hardy, one of the leading
English mathematicians of the time. Hardy recognized the
signs of genius, and came to his aid, even going so far as to
bring Romanujan to England and tutor him personally. As Ra-
manujan had been self-educated, there were great gaps in his
knowledge, but his mastery of the subjects he knew was stun-
ning. Eventually, he published papers in English and Euro-
pean mathematics journals, was elected to the Royal Society
of London, and contributed pioneering discoveries to number
theory.

Hermann Giinther Grassman was another unusual individ-
ual. An ordained minister in Poland, he turned to mathemat-
ics and published a book called Dse Lineale Ausdebnungslehre in
1844. Although the modern mathematical community regards
the book as a work of genius, mathematicians of Grassman’s
day rejected it outright not only because it was unclear (Grass-
man invented a symbolism that was, unhappily for everyone,
all his own), but also because it was frankly weird and almost
mystical.

In their book The Mathematical Experience, Philip Davis and
Reuben Hersh remind us of the Polish mathematician Jozef
Maria Wronski, ‘“whose personality and work combined ele-
ments from pretentious naiveté to genius near madness’’ and
who printed his own ‘“‘key to the universe” on all his works,
“placed in a cartouche, sanctified by the zodiac, and guarded
by a sphinx.” They continue on the subject:

There is work, then, which is wrong, is acknowledged to
be wrong, and which, at some later date, may be set to
rights. There is work which is dismissed without exami-
nation. There is work which is so obscure that it is difficult
to interpret and is perforce ignored. Some of it may emerge
later. There is work which may be of great importance . . .
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which is heterodox, and as a result, is ignored or boy-
cotted. There is also work, perhaps the bulk of the math-
ematical output, which is admiteedly correct, but which in
the long run is ignored for lack of interest or because the
main streams of mathematics did not choose to pass that
way. In the final analysis, there can be no formalization of
what is right and how we know it is right, what is accepted,
and what the mechanism for acceptance is. As Hermann
Weyl has written, “Mathematizing may well be a creative
activity of man . . . whose historical decisions defy com-
plete objective rationalization.”

But if you know you’re not 2 Ramanujan or a Grassman or a
Wronski, you should be aware of the following. In Wheels, Life
and Other Mathematical Amusements, Martin Gardner notes:

The mathematics departments of many large universities
return all proofs of Fermat’s last theorem with a form letter
stating that the paper will be evaluated only after an ad-
vance payment of a specified fee. Edmund Landau, a Ger-
man mathematician, used a form letter that read: “Dear
Sir/ Madam: Your proof of Fermat’s last theorem has been
received. The first mistake is on page —_ , line ”
Landau would then assign the filling in of the blanks to a
graduate student.

[ The Search for Other Proofs |

Before we get back to Fermat, you might want to consider
performing the following mathematical feats:

[ 1] Wiles proved F.L.'T. with concepts from hyperbolic (non-Eu-
clidean) geometry in the way that Bolyai squared the circle in
hyperbolic geometry, a construction that was proven impos-
sible in abstract algebra. Use Euclidean geometry or abstract
algebra to prove that F.L..'T. is impossible to prove.
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{ 2] Better vet, use Euclidean geometry to prove that F.L.T. is
true, which will be more of an achievement than a non-Euclid-
ean proof. Or use Euclidean geometry to prove that EL.T. is
true with a direct proof. (This is guaranteed to thrill every
formalist on the planet and can hardly be surpassed.)

[3] And for the most ambitious, use hyperbolic geometry to
prove that F.L..T. is impossible to prove. A contradiction of
this magnitude (and fame) could cause the entire field to
collapse. (But don’t expect any of the experts in hyperbolic
geometry to want to verify your proof.)

[4] To demolish Einstein’s theories of relativity (in elliptic ge-
ometry), you could go back and prove the parallel postu-
late, bringing down not only Einstein, but all of the non-
Euclidean geometries, as well. (Or you could go after Ein-
stein selectively by the route of proving a contradiction in
elliptic geometry.)

| Fermat’s Other Unproved Theorem |

But if you don’t want to spend the rest of your life trying to
give all modern mathematicians a nervous breakdown, you
could narrow your enthusiasm to Fermat’s of4er unproved
“theorem.” Fermat, you see, made mistakes just like the rest
of us. One of his unproved conjectures turned out false a cen-
tury later. (Given everything you’ve read in this book, it’s a
little unsettling to think about, isn’t it?)

Back in 1640, three years affer what we now call Fermat’s
“last” theorem was written in a marginal note, he wrote to
several of his friends and stated that all numbers of the con-
struction 22" + 1 are prime. (Prime numbers of this construc-
tion are now known as ‘“Fermat primes”.) However, Euler
showed a century afterward that the number 22° + 1 has a
factor of 641. (That is, it can be divided evenly by 641.) This
means it is not a prime number, so Fermat was wrong. It is
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unknown if there are any Fermat primes above Euler’s non-
prime number of 4,294,967,297. 22 +1 =22 +1 =
4,294,967,296 + 1 = 4,294,967,297. Because 4,294,967,297
can be divided evenly by 641, it is not a prime number, the
way Fermat mistakenly conjectured.)

Clearly, an inductive proof would have been a failure here,
at least in the days before computers. And even with comput-
ers on the scene, who’s to say when enough searching is
enough? An exception turning up in the neighborhood of
4,294,967,297 must surely have been a surprise to Euler. Con-
sidering how many arithmetic tools have been created ex-
pressly for the purpose of proving F.L..' T. —and not disproving
it—we’d better hope that Fermat’s last theorem is indeed true
to begin with and that there isn’t an exception sitting just
beyond the current horizon the way there was before.

The question now is, do there exist infinitely many Fermat
primes of the construction 22" + 17 This way, only yox are
likely to have the nervous breakdown (regardless of whether
you succeed).

In the book An Introduction to Mathematics, the famed Alfred
North Whitehead wrote, “The study of mathematics is apt to
commence in disappointment . . . We are told that by its aid
the stars are weighed, and the billions of molecules in a drop
of water are counted. Yet, like the ghost of Hamlet’s father,
this great science eludes the efforts of our mental weapons to
grasp it.”

If Wiles’s proof holds up in “math court,” his place in the
history of mathematics is assured. But that’s because he
solved a famous problem. That shouldn’t make him outshine
the many, many more mathematicians out there working qui-
etly away, day after day, honorably and productively, at far
less famous tasks than his. They, along with many others, are
responsible for much of the quality of life we Americans are
now able to take for granted, from videotape recorders to com-
puters to communications satellites.
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And if Andrew Wiles really did have that keen sense of hu-
mor “postulated” in the first part of this book, you know what
he’d do, don’t you? In order to bedevil future generations of
mathematicians, he’d leave a little note somewhere in the
margin of his copy of Albert Einstein’s last paper entitled
“Relativistic Theory of the Non-Symmetric Field” to wit:

I now know that this is impossible, and I've found a re-
markable proof, but the margin is too small to contain it.
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A Poem by Cody Pfanstiehl

X to the nth plus Y to the nth
Equals Z to the nth. This is true,
But it’s only when

The number for n

Is a number that’s not more than 2.

Yes, the square of the X and the square of the Y
Does equal the square of the Z,

[f you limit the exponents

On the left side

10 superscripts smaller than 3.

Put your X in one basket but please do not ask it
To raise itself more than a deuce.

And you would be wise

To limit your Ys

To a number not greater than tuece.

A 3 raised to 9 is just dandy and fine
Plus a 4 to 16 is real cool.

But larger than that

All the sums are too fat

As surely they taught you in school.

A 3 times a 3 plus a4 times a4
Add up toa 5 times a 5,

But is there a proof

That is not just a spoof

That exponents larger survive?

Who can jostle and jigger the numbers with vigor
To prove Pierre Fermat’s old theorem?

Through ages the sages

Wrote thousands of pages

But nobody came even near ’im
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Until Andy Wiles who presented, with smiles,
A 200 page affirmation.

He accepted the praise.

Now he hopes for a raise

Which is better than mere adulation,

His colleagues all cheered (save a few who were weird)
As they set out to check out his math.

Now they’ll ask him, these rubes,

To divide up those cubes

And we’ll see who will have the last laugh.



Appendix

[ Kar! Rubin’s Highlights of Andrew
Wiles’s Proof ]

Hello netters, local number theorist [no crank

he’s the most recent recipient of the AMS Cole
Prize in Number theory] Prof. Karl Rubin was pres-
ent at the Wiles lectures in Cambridge. He has
posted the following outline of the proof to our
math newsgroup:

From K. C. Rubin@newton.cam.ac.uk Thu Jun 24
14:50:52 EDT 1993

Article: 535 of math.announce

Path: math.ohio-state.edu!gateway

From: K.C.Rubin@newton.cam.ac.uk

Newsgroups: math.announce

Subject: sketch of Fermat

Date: 24 June 1993 09:19:10 -0400

[73]
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Organization: The Ohio State University, Department
of Mathematics

Lines: 103

Sender: daemon@math.ohio-state.edu

Message-ID: <mOQo8rAP-
00005sC@newton.newton.cam.ac.uk>

NNTP-Posting-Host: mathserv. mps.ohio-state.edu

Several people have asked for more details about
Andrew’s proof. Here is a lengthy sketch. Enjoy.

Karl

Theorem. If E is a semistable elliptic curve defined over Q, then
E is modular.

It has been known for some time, by work of Frey and Ri-
bet, that Fermat follows from this. If #9 + 29 + @9 = 0, then
Frey had the idea of looking at the (semistable) elliptic curve
¥? = x(x—u%) (x+09). If this elliptic curve comes from a mod-
ular form, then the work of Ribet on Serre’s conjecture shows
that there would have to exist a modular form of weight 2 on
I'y(2). But there are no such forms.

To prove the Theorem, start with an elliptic curve E, a
prime p and let

p,: Gal (Q/Q) = GL, (Z/pZ)

be the representation giving the action of Galois on the p-
torsion E[p]. We wish to show that a cerzain lift of this repre-
sentation to GL,(Z,) (namely, the p-adic representation on
the Tate module T,(E)) is attached to a modular form. We will
do this by using Mazur’s theory of deformations, to show that
every lifting which ‘looks modular’ in a certain precise sense is
attached to a modular form.

Fix certain ‘lifting data’, such as the allowed ramification,
specified local behavior at p, etc. for the lift. This defines a



MARILYN VOS SAVANT [75]

lifting problem, and Mazur proves that there is a universal lift,
1.e. a local ring R and a representation into GL,(R) such that
every lift of the appropriate type factors through this one.

Now suppose that p, is modular, i.e. there is some lift of p,
which is attached to a modular form. Then there is also a
Hecke ring 7, which is the maximal quotient of R with the
property that all modular lifts factor through 7. It is a conjec-
ture of Mazur that R = 7, and it would follow from this that
every lift of p,which “looks modular’ (in particular the one we
are interested in) is attached to a modular form.

Thus we need to know 2 things:

(a) p,is modular

(b) R=T.

It was proved by Tunnell that p;is modular for every elliptic
curve. This is because PGL,Z/3Z) = S,. So (a) will be sat-
isfied if we take p=3. This is crucial.

Wiles uses (a) to prove (b) under some restrictions on p,.
Using (a) and some commutative algebra (using the fact that
T is Gorenstein, ‘‘basically due to Mazur’’) Wiles reduces the
statement 7' = R to checking an inequality between the sizes
of 2 groups. One of these is related to the Selmer group of the
symmetric square of the given modular lifting of p,, and the
other is related (by work of Hida) to an L-value. The required
inequality, which everyone presumes is an instance of the
Block-Kato conjecture, is what Wiles needs to verify.

He does this using a Kolyvagin-type Euler system argu-
ment. This is the most technically difficult part of the proof,
and is responsible for most of the length of the manuscript.
He uses modular units to construct what he calls a ‘geometric
Euler system’ of cohomology classes. The inspiration for his
construction comes from work of Flach, who came up with
what is essentially the ‘bottom level’ of this Euler system. But
Wiles needed to go much farther than Flach did. In the end,
under certain hypotheses on p, he gets a workable Euler system
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and proves the desired inequality. Among other things, it is
necessary that p,is irreducible.

Suppose now that K is semistable.

Case 1. p, is irreducible.

Take p=3. By Tunnell’s theorem (a) above is true. Under
these hypotheses the argument above works for p;, so we con-
clude that £ is modular.

Case 2. p; is reducible.

Take p=>5. In this case p; must be irreducible, or else E
would correspond to a rational point on Xy(15). But X,(15) has
only 4 noncuspidal rational points, and these correspond to
non-semistable curves. [f we knew that p; were modular, then
the computation above would apply and £ would be modular.

We will find a new semistable elliptic curve £’ such that py 5
= pgs and py 5 is irreducible. Then by Case I, £’ is modular.
Therefore p, s = ps- s does have a modular lifting and we will
be done.

We need to construct such an £’. Let X denote the modular
curve whose points correspond to pairs (A, ) where A s an
elliptic curve and € is a subgroup of A isomorphic to the group
scheme E[5]. (All such curves will have mod-5 representation
equal to pg.) This X is genus 0, and has one rational point
corresponding to £, so it has infinitely many. Now Wiles uses
a Hilbert Irreducibility argument to show that not all rational
points can be images of rational points on modular curves cov-
ering X, corresponding to degenerate level 3 structure (i.e.
im(p;) #GL,(Z/3)). In other words, an E’ of the type we need
exists. ('To make sure E' is semistable, choose it 5-adically
close o E. Then it is semistable at 5, and at other primes
because pg s = pgs.)
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